Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leonardo Scarabelli is active.

Publication


Featured researches published by Leonardo Scarabelli.


ACS Nano | 2014

Monodisperse Gold Nanotriangles: Size Control, Large-Scale Self-Assembly, and Performance in Surface-Enhanced Raman Scattering

Leonardo Scarabelli; Marc Coronado-Puchau; Juan J. Giner-Casares; Judith Langer; Luis M. Liz-Marzán

Au nanotriangles display interesting nanoplasmonic features with potential application in various fields. However, such applications have been hindered by the lack of efficient synthetic methods yielding sufficient size and shape monodispersity, as well as by insufficient morphological stability. We present here a synthesis and purification protocol that efficiently addresses these issues. The size of the nanotriangles can be tuned within a wide range by simply changing the experimental parameters. The obtained monodispersity leads to extended self-assembly, not only on electron microscopy grids but also at the air-liquid interface, allowing transfer onto centimeter-size substrates. These extended monolayers show promising performance as surface-enhanced Raman scattering substrates, as demonstrated for thiophenol detection.


ACS Nano | 2014

Hierarchical self-assembly of gold nanoparticles into patterned plasmonic nanostructures.

Cyrille Hamon; Sergey M. Novikov; Leonardo Scarabelli; Lourdes Basabe-Desmonts; Luis M. Liz-Marzán

The integration of nanoparticle superstructures into daily life applications faces major challenges including the simplification of the self-assembly process, reduced cost, and scalability. It is, however, often difficult to improve on one aspect without losing on another. We present in this paper a benchtop method that allows patterning a macroscopic substrate with gold nanoparticle supercrystals in a one-step process. The method allows parallelization, and patterned substrates can be made with high-throughput. The self-assembly of a variety of building blocks into crystalline superstructures takes place upon solvent evaporation, and their precise placement over millimeter scale areas is induced by confinement of the colloidal suspension in micron-sized cavities. We mainly focus on gold nanorods and demonstrate their hierarchical organization up to the device scale. The height of the formed nanorod supercrystals can be tuned by simply varying nanorod concentration, so that the topography of the substrate and the resulting optical properties can be readily modulated. The crystalline order of the nanorods results in homogeneous and high electric field enhancements over the assemblies, which is demonstrated by surface-enhanced Raman scattering spectroscopy.


Nature Materials | 2016

Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering

Gustavo Bodelón; Verónica Montes-García; Vanesa López-Puente; Eric H. Hill; Cyrille Hamon; Marta N. Sanz-Ortiz; Sergio Rodal-Cedeira; Celina Costas; Sirin Celiksoy; Ignacio Pérez-Juste; Leonardo Scarabelli; Andrea La Porta; Jorge Pérez-Juste; Isabel Pastoriza-Santos; Luis M. Liz-Marzán

Most bacteria in nature exist as biofilms, which support intercellular signaling processes such as quorum sensing (QS), a cell-to-cell communication mechanism that allows bacteria to monitor and respond to cell density and changes in the environment. Because QS and biofilms are involved in the ability of bacteria to cause disease, there is a need for the development of methods for the non-invasive analysis of QS in natural bacterial populations. Here, by using surface-enhanced resonance Raman scattering spectroscopy, we report rationally designed nanostructured plasmonic substrates for the in-situ, label-free detection of a QS signaling metabolite in growing Pseudomonas aeruginosa biofilms and microcolonies. The in situ, non-invasive plasmonic imaging of QS in biofilms provides a powerful analytical approach for studying intercellular communication on the basis of secreted molecules as signals.


Nano Letters | 2015

Unveiling Nanometer Scale Extinction and Scattering Phenomena through Combined Electron Energy Loss Spectroscopy and Cathodoluminescence Measurements

Arthur Losquin; Luiz Fernando Zagonel; Viktor Myroshnychenko; Benito Rodríguez-González; Marcel Tencé; Leonardo Scarabelli; Jens Förstner; Luis M. Liz-Marzán; F. Javier García de Abajo; Odile Stéphan; Mathieu Kociak

Plasmon modes of the exact same individual gold nanoprisms are investigated through combined nanometer-resolved electron energy-loss spectroscopy (EELS) and cathodoluminescence (CL) measurements. We show that CL only probes the radiative modes, in contrast to EELS, which additionally reveals dark modes. The combination of both techniques on the same particles thus provides complementary information and also demonstrates that although the radiative modes give rise to very similar spatial distributions when probed by EELS or CL, their resonant energies appear to be different. We trace this phenomenon back to plasmon dissipation, which affects in different ways the plasmon signatures probed by these techniques. Our experiments are in agreement with electromagnetic numerical simulations and can be further interpreted within the framework of a quasistatic analytical model. We therefore demonstrate that CL and EELS are closely related to optical scattering and extinction, respectively, with the addition of nanometer spatial resolution.


Nano Letters | 2015

Controlled living nanowire growth : precise control over the morphology and optical properties of AgAuAg bimetallic nanowires

Martin Mayer; Leonardo Scarabelli; Katia March; Thomas Altantzis; Moritz Tebbe; Mathieu Kociak; Sara Bals; F. Javier García de Abajo; Andreas Fery; Luis M. Liz-Marzán

Inspired by the concept of living polymerization reaction, we are able to produce silver–gold–silver nanowires with a precise control over their total length and plasmonic properties by establishing a constant silver deposition rate on the tips of penta-twinned gold nanorods used as seed cores. Consequently, the length of the wires increases linearly in time. Starting with ∼210 nm × 32 nm gold cores, we produce nanowire lengths up to several microns in a highly controlled manner, with a small self-limited increase in thickness of ∼4 nm, corresponding to aspect ratios above 100, whereas the low polydispersity of the product allows us to detect up to nine distinguishable plasmonic resonances in a single colloidal solution. We analyze the spatial distribution and the nature of the plasmons by electron energy loss spectroscopy and obtain excellent agreement between measurements and electromagnetic simulations, clearly demonstrating that the presence of the gold core plays a marginal role, except for relatively short wires or high-energy modes.


Chemical Communications | 2014

Self-assembled monolayers of gold nanostars: a convenient tool for near-IR photothermal biofilm eradication

Piersandro Pallavicini; Alice Donà; Angelo Taglietti; Paolo Minzioni; M. Patrini; Giacomo Dacarro; Giuseppe Chirico; Laura Sironi; Nora Bloise; Livia Visai; Leonardo Scarabelli

Monolayers of gold nanostars (GNS) are grafted on mercaptopropyltrimethoxysilane-coated glass slides. In the formed monolayers the localized surface plasmon resonance of GNS can be tuned in the 700-1100 nm range. Upon laser excitation of the nearIR LSPR an efficient photothermal response is observed, inducing local hyperthermia and efficient killing of Staphylococcus aureus biofilms.


ACS Nano | 2016

Light-Directed Reversible Assembly of Plasmonic Nanoparticles Using Plasmon-Enhanced Thermophoresis

Linhan Lin; Xiaolei Peng; Mingsong Wang; Leonardo Scarabelli; Zhangming Mao; Luis M. Liz-Marzán; Michael F. Becker; Yuebing Zheng

Reversible assembly of plasmonic nanoparticles can be used to modulate their structural, electrical, and optical properties. Common and versatile tools in nanoparticle manipulation and assembly are optical tweezers, but these require tightly focused and high-power (10-100 mW/μm2) laser beams with precise optical alignment, which significantly hinders their applications. Here we present light-directed reversible assembly of plasmonic nanoparticles with a power intensity below 0.1 mW/μm2. Our experiments and simulations reveal that such a low-power assembly is enabled by thermophoretic migration of nanoparticles due to the plasmon-enhanced photothermal effect and the associated enhanced local electric field over a plasmonic substrate. With software-controlled laser beams, we demonstrate parallel and dynamic manipulation of multiple nanoparticle assemblies. Interestingly, the assemblies formed over plasmonic substrates can be subsequently transported to nonplasmonic substrates. As an example application, we selected surface-enhanced Raman scattering spectroscopy, with tunable sensitivity. The advantages provided by plasmonic assembly of nanoparticles are the following: (1) low-power, reversible nanoparticle assembly, (2) applicability to nanoparticles with arbitrary morphology, and (3) use of simple optics. Our plasmon-enhanced thermophoretic technique will facilitate further development and application of dynamic nanoparticle assemblies, including biomolecular analyses in their native environment and smart drug delivery.


ACS Photonics | 2015

Collective Plasmonic Properties in Few-Layer Gold Nanorod Supercrystals

Cyrille Hamon; Sergey M. Novikov; Leonardo Scarabelli; D. M. Solís; Thomas Altantzis; Sara Bals; J. M. Taboada; F. Obelleiro; Luis M. Liz-Marzán

Gold nanorod supercrystals have been widely employed for the detection of relevant bioanalytes with detection limits ranging from nano- to picomolar levels, confirming the promising nature of these structures for biosensing. Even though a relationship between the height of the supercrystal (i.e., the number of stacked nanorod layers) and the enhancement factor has been proposed, no systematic study has been reported. In order to tackle this problem, we prepared gold nanorod supercrystals with varying numbers of stacked layers and analyzed them extensively by atomic force microscopy, electron microscopy and surface enhanced Raman scattering. The experimental results were compared to numerical simulations performed on real-size supercrystals composed of thousands of nanorod building blocks. Analysis of the hot spot distribution in the simulated supercrystals showed the presence of standing waves that were distributed at different depths, depending on the number of layers in each supercrystal. On the basis of these theoretical results, we interpreted the experimental data in terms of analyte penetration into the topmost layer only, which indicates that diffusion to the interior of the supercrystals would be crucial if the complete field enhancement produced by the stacked nanorods is to be exploited. We propose that our conclusions will be of high relevance in the design of next generation plasmonic devices.


Journal of Physical Chemistry C | 2016

Molecular-Fluorescence Enhancement via Blue-Shifted Plasmon-Induced Resonance Energy Transfer

Mingsong Wang; Bharath Bangalore Rajeeva; Leonardo Scarabelli; Evan P. Perillo; Andrew K. Dunn; Luis M. Liz-Marzán; Yuebing Zheng

We report molecular-fluorescence enhancement via the blue-shifted plasmon-induced resonance energy transfer (PIRET) from single Au nanorods (AuNRs) to merocyanine (MC) dye molecules. The blue-shifted PIRET occurs when there is a proper spectral overlap between the scattering of AuNRs and the absorption of MC molecules. Along with the quenching of scattering from AuNRs, the blue-shifted PIRET enhances the fluorescence of nearby molecules. On the basis of the fluorescence enhancement, we conclude that AuNRs can be used as donors with clear advantages to excite the fluorescence of molecules as acceptors in AuNR-molecule hybrids. On the one hand, compared to conventional molecular donors in Förster resonance energy transfer (FRET), AuNRs have much larger absorption cross sections at the plasmon resonance frequencies. On the other hand, energy-transfer efficiency of PIRET decreases at a lower rate than that of FRET when the donor-acceptor distance is increased. Besides, the blue-shifted PIRET allows excitation with incident light of lower energy than the acceptors absorption, which is difficult to achieve in FRET because of the Stokes shift. With the capability of enhancing molecular fluorescence with excitation light of low intensity and long wavelength, the blue-shifted PIRET will expand the applications of nanoparticle- molecule hybrids in biosensing and bioimaging by increasing signal-to-noise ratio and by reducing photodamage to biological cells and organelles at the targeted areas.


Advanced Science | 2015

Regioselective Localization and Tracking of Biomolecules on Single Gold Nanoparticles

Bharath Bangalore Rajeeva; Derek S. Hernandez; Mingsong Wang; Evan P. Perillo; Linhan Lin; Leonardo Scarabelli; Bharadwaj Pingali; Luis M. Liz-Marzán; Andrew K. Dunn; Jason B. Shear; Yuebing Zheng

Selective localization of biomolecules at the hot spots of a plasmonic nanoparticle is an attractive strategy to exploit the light–matter interaction due to the high field concentration. Current approaches for hot spot targeting are time‐consuming and involve prior knowledge of the hot spots. Multiphoton plasmonic lithography is employed to rapidly immobilize bovine serum albumin (BSA) hydrogel at the hot spot tips of a single gold nanotriangle (AuNT). Regioselectivity and quantity control by manipulating the polarization and intensity of the incident laser are also established. Single AuNTs are tracked using dark‐field scattering spectroscopy and scanning electron microscopy to characterize the regioselective process. Fluorescence lifetime measurements further confirm BSA immobilization on the AuNTs. Here, the AuNT‐BSA hydrogel complexes, in conjunction with single‐particle optical monitoring, can act as a framework for understanding light–molecule interactions at the subnanoparticle level and has potential applications in biophotonics, nanomedicine, and life sciences.

Collaboration


Dive into the Leonardo Scarabelli's collaboration.

Top Co-Authors

Avatar

Mingsong Wang

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Yuebing Zheng

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Javier Reguera

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew K. Dunn

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Evan P. Perillo

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Andreas Fery

Dresden University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge