Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leonardo Silva Barbedo is active.

Publication


Featured researches published by Leonardo Silva Barbedo.


Fems Yeast Research | 2013

Phenotypical properties associated with virulence from clinical isolates belonging to the Candida parapsilosis complex

Érika A. Abi-chacra; Lucieri O.P. Souza; Lucas P. Cruz; Lys A. Braga-Silva; Diego S. Gonçalves; Cátia L. Sodré; Marcos D. Ribeiro; Sergio H. Seabra; Maria Helena Galdino Figueiredo-Carvalho; Leonardo Silva Barbedo; Rosely Maria Zancopé-Oliveira; Mariangela Ziccardi; André Luis Souza dos Santos

The production of virulence attributes in three reference strains and 11 clinical isolates primarily identified as Candida parapsilosis was evaluated. Morphological and phenotypical tests were not able to discriminate among the three species of the C. parapsilosis complex; consequently, molecular methods were applied to solve this task. After employing polymerase chain reaction-based methods, nine clinical strains were identified as C. parapsilosis sensu stricto and two as C. orthopsilosis. Protease, catalase, and hemolysin were produced by all 14 strains, while 92.9% and 78.6% of strains secreted, respectively, esterase and phytase. No phospholipase producers were detected. Mannose/glucose, N-acetylglucosamine, and sialic acid residues were detected at the surface of all strains, respectively, in high, medium, and low levels. All strains presented elevated surface hydrophobicity and similar ability to form biofilm. However, the adhesion to inert substrates and mammalian cells was extremely diverse, showing typical intrastrain variations. Overall, the strains showed (1) predilection to adhere to plastic over glass and the number of pseudohyphae was more prominent than yeasts and (2) the interaction process was slightly enhanced in macrophages than fibroblasts, with the majority of fungal cells detected inside them. Positive/negative correlations were demonstrated among the production of these virulence traits in C. parapsilosis complex.


Journal of Antimicrobial Chemotherapy | 2015

Candida haemulonii complex: species identification and antifungal susceptibility profiles of clinical isolates from Brazil

Lívia S. Ramos; Maria Helena Galdino Figueiredo-Carvalho; Leonardo Silva Barbedo; Mariangela Ziccardi; Alessandra Leal da Silva Chaves; Rosely Maria Zancopé-Oliveira; Márcia R. Pinto; Diana Bridon da Graça Sgarbi; Marcos Dornelas-Ribeiro; Marta H. Branquinha; André Luis Souza dos Santos

OBJECTIVES The emerging fungal pathogens comprising the Candida haemulonii complex (Candida haemulonii, Candida haemulonii var. vulnera and Candida duobushaemulonii) are notable for their antifungal resistance. Twelve isolates with phenotypic similarity to C. haemulonii were recovered from patients in Brazilian hospitals. Here we aimed to identify these isolates by a molecular approach, using the current classification of this fungal complex, and to evaluate their antifungal susceptibility profiles. METHODS The fungal isolates were rechecked to certify their authentication by mycology methodologies and then characterized by ITS1-5.8S-ITS2 gene sequencing. A susceptibility assay was performed using the broth microdilution method published by CLSI (M27-A3/M27-S3). RESULTS Based on biochemical tests, all Brazilian isolates were identified as C. haemulonii. After employing ITS sequencing, five isolates were identified as C. haemulonii, four as C. duobushaemulonii and three as C. haemulonii var. vulnera. All 12 clinical isolates were resistant to amphotericin B (MICs ranged from 2 to >16 mg/L) and fluconazole (MICs ≥ 64 mg/L). One isolate of C. haemulonii var. vulnera and two isolates of C. duobushaemulonii were susceptible-dose dependent to itraconazole, while the remaining isolates (75%) were resistant to this antifungal. Eight out of 12 isolates (66.7%) were resistant to voriconazole (MICs ≥ 16 mg/L), while all isolates were susceptible to caspofungin (MICs ≤ 0.5 mg/L). CONCLUSIONS Our results reinforce the importance of molecular identification in differentiating species of the C. haemulonii complex. Moreover, the antifungal multiresistant profile of clinical isolates of the C. haemulonii complex represents a challenge to the treatment of such infections.


Revista Iberoamericana De Micologia | 2015

Protease and phospholipase activities of Candida spp. isolated from cutaneous candidiasis

Lívia S. Ramos; Leonardo Silva Barbedo; Lys A. Braga-Silva; André Luis Souza dos Santos; Márcia R. Pinto; Diana Bridon da Graça Sgarbi

BACKGROUND Cases of superficial and invasive mycoses caused by emerging species of Candida have been increasingly reported over the last thirty years. The production of hydrolytic enzymes plays a central role in the fungal infective process. In Candida infections the secretion of both proteases and phospholipases are well-known virulence attributes. AIMS To determine the protease and phospholipase production from 58 human clinical isolates of Candida obtained from individuals with cutaneous candidiasis seen in the Human and Veterinary Diagnostic Mycology Sector from Universidade Federal Fluminense (UFF), Brazil, from November 2008 to August 2009. METHODS Fungal identification was performed using biochemical tests. Proteolytic activity was detected on agar plates containing bovine serum albumin, and phospholipase production was determined on egg-yolk plates. RESULTS The Candida species isolated were Candida parapsilosis (27.59%), Candida famata (18.96%), Candida albicans (15.52%), Candida haemulonii (12.06%), Candida ciferri (8.62%), Candida guilliermondii (6.90%), Candida tropicalis (5.17%) and Candida lipolytica (5.17%). All isolates of C. albicans produced both protease and phospholipase. As regards the isolates of non-C. albicans Candida species, 53.06% and 4.08% were able to produce protease and phospholipase, respectively. For example, the majority of isolates of C. parapsilosis (15/16) produced protease, while 40% of C. ciferri isolates (2/5) were phospholipase producers. This study shows, for the first time, that C. ciferri and C. haemulonii strains were able to produce protease. CONCLUSIONS Collectively, our results showed that different species of Candida isolated from cutaneous lesions were able to produce proteases and/or phospholipases, which are multifunctional molecules directly involved in the infectious process of these fungi.


Memorias Do Instituto Oswaldo Cruz | 2016

First description of Candida nivariensis in Brazil: antifungal susceptibility profile and potential virulence attributes

Maria Helena Galdino Figueiredo-Carvalho; Lívia S. Ramos; Leonardo Silva Barbedo; Alessandra Leal da Silva Chaves; Ilda Akemi Muramoto; André Luis Souza dos Santos; Rodrigo Almeida-Paes; Rosely Maria Zancopé-Oliveira

This study evaluated the antifungal susceptibility profile and the production of potential virulence attributes in a clinical strain of Candida nivariensis for the first time in Brazil, as identified by sequencing the internal transcribed spacer (ITS)1-5.8S-ITS2 region and D1/D2 domains of the 28S of the rDNA. For comparative purposes, tests were also performed with reference strains. All strains presented low planktonic minimal inhibitory concentrations (PMICs) to amphotericin B (AMB), caspofungin (CAS), and voriconazole. However, our strain showed elevated planktonic MICs to posaconazole (POS) and itraconazole, in addition to fluconazole resistance. Adherence to inert surfaces was conducted onto glass and polystyrene. The biofilm formation and antifungal susceptibility on biofilm-growing cells were evaluated by crystal violet staining and a XTT reduction assay. All fungal strains were able to bind both tested surfaces and form biofilm, with a binding preference to polystyrene (p < 0.001). AMB promoted significant reductions (≈50%) in biofilm production by our C. nivariensis strain using both methodologies. This reduction was also observed for CAS and POS, but only in the XTT assay. All strains were excellent protease producers and moderate phytase producers, but lipases were not detected. This study reinforces the pathogenic potential of C. nivariensis and its possible resistance profile to the azolic drugs generally used for candidiasis management.


Journal of Medical Microbiology | 2015

Different scenarios for Candida parapsilosis fungaemia reveal high numbers of mixed C. parapsilosis and Candida orthopsilosis infections.

Leonardo Silva Barbedo; Catarina Vaz; Célia Pais; Maria Helena Galdino Figueiredo-Carvalho; Mauro de Medeiros Muniz; Rosely Maria Zancopé-Oliveira; Paula Sampaio

Nosocomial fungal bloodstream infections (BSI) are increasing significantly in hospitalized patients and Candida parapsilosis has emerged as an important pathogen responsible for numerous outbreaks. The objective of this study was to evaluate C. parapsilosis sensu lato infection scenarios, regarding species distribution and strain relatedness. One hundred isolates of C. parapsilosis sensu lato derived from blood cultures and catheter tips were analysed by multiplex microsatellite typing and by sequencing D1/D2 regions of the ribosomal DNA. Our results indicate that 9.5 % of patients presented infections due to C. parapsilosis and Candida orthopsilosis, 57.1 % due to C. parapsilosis, 28.3 % due to C. orthopsilosis and 4.8 % due to Candida metapsilosis. Eighty per cent of the C. parapsilosis BSIs were due to a single strain that was also identified in the catheter, but in 10 % of the cases C. parasilosis was identified in the catheter but the BSI was due to C. orthopsilosis. There is a significant probability that C. parapsilosis isolates collected from the same patient at more than 3 months interval are of different strains (P = 0.0179). Moreover, several isolates were identified persistently in the same hospital, infecting six different patients. The incidence of polyfungal BSI infections with C. parapsilosis and C. orthopsilosis is reported herein for the first time, emphasizing the fact that the species identified in the catheter is not always responsible for the BSI, thus impacting the treatment strategy. The observation that strains can remain in the hospital environment for years highlights the possible existence of reservoirs and reinforces the need for accurate genotyping tools, such as the markers used for elucidating epidemiological associations and detecting outbreaks.


Memorias Do Instituto Oswaldo Cruz | 2016

The identification and differentiation of the Candida parapsilosis complex species by polymerase chain reaction-restriction fragment length polymorphism of the internal transcribed spacer region of the rDNA

Leonardo Silva Barbedo; Maria Helena Galdino Figueiredo-Carvalho; Mauro de Medeiros Muniz; Rosely Maria Zancopé-Oliveira

Currently, it is accepted that there are three species that were formerly grouped under Candida parapsilosis: C. para- psilosis sensu stricto, Candida orthopsilosis, andCandida metapsilosis. In fact, the antifungal susceptibility profiles and distinct virulence attributes demonstrate the differences in these nosocomial pathogens. An accurate, fast, and economical identification of fungal species has been the main goal in mycology. In the present study, we searched sequences that were available in the GenBank database in order to identify the complete sequence for the internal transcribed spacer (ITS)1-5.8S-ITS2 region, which is comprised of the forward and reverse primers ITS1 and ITS4. Subsequently, an in silico polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was performed to differentiate the C. parapsilosis complex species. Ninety-eight clinical isolates from patients with fungaemia were submitted for analysis, where 59 isolates were identified as C. parapsilosis sensu stricto, 37 were identified as C. orthopsilosis, and two were identified as C. metapsilosis. PCR-RFLP quickly and accurately identified C. parapsilosis complex species, making this method an alternative and routine identification system for use in clinical mycology laboratories.


Memorias Do Instituto Oswaldo Cruz | 2018

Multiplex polymerase chain reaction as an improved method for screening Histoplasma capsulatum mating types

Fernando Almeida-Silva; Leonardo Silva Barbedo; Maria Lucia Taylor; Mauro de Medeiros Muniz; Allan J. Guimarães; Rosely Maria Zancopé-Oliveira

Histoplasmosis is a systemic mycosis infection caused by Histoplasma capsulatum, a heterothallic ascomycete. The sexual reproduction of this fungus is regulated by the mating type (MAT1) locus that contains MAT1-1 and MAT1-2 idiomorphs, which were identified by uniplex polymerase chain reaction (PCR). This study aimed to optimise single-step multiplex PCR for the accurate detection of the distinct mating types of H. capsulatum. Among the 26 isolates tested, 20 had MAT1-1 genotype, while six showed MAT1-2 genotype, in agreement with the uniplex PCR results. These results suggest that multiplex PCR is a fast and specific tool for screening H. capsulatum mating types.


Memorias Do Instituto Oswaldo Cruz | 2017

Comparison of four molecular approaches to identify Candida parapsilosis complex species

Leonardo Silva Barbedo; Maria Helena Galdino Figueiredo-Carvalho; Mauro de Medeiros Muniz; Rosely Maria Zancopé-Oliveira

Since the description of Candida orthopsilosis and C. metapsilosis in 2005, several methods have been proposed to identify and differentiate these species from C. parapsilosis sensu stricto. Species-specific uniplex polymerase chain reaction (PCR) was performed and compared with sequencing of the D1/D2 region of the LSU 28S rDNA gene, microsatellite typing of C. parapsilosis sensu stricto, and PCR-restriction fragment length polymorphism patterns in the ITS1-5.8S-ITS2 region of the rDNA gene. There was agreement between results of testing of 98 clinical isolates with the four PCR-based methods, with 59 isolates identified as C. parapsilosis sensu stricto, 37 as C. orthopsilosis, and two as C. metapsilosis.Since the description of Candida orthopsilosis and C. metapsilosis in 2005, several methods have been proposed to identify and differentiate these species from C. parapsilosis sensu stricto. Species-specific uniplex polymerase chain reaction (PCR) was performed and compared with sequencing of the D1/D2 region of the LSU 28S rDNA gene, microsatellite typing of C. parapsilosis sensu stricto, and PCR-restriction fragment length polymorphism patterns in the ITS1-5.8S-ITS2 region of the rDNA gene. There was agreement between results of testing of 98 clinical isolates with the four PCR-based methods, with 59 isolates identified as C. parapsilosis sensu stricto, 37 as C. orthopsilosis, and two as C. metapsilosis.


Mediators of Inflammation | 2017

Relationship between the Antifungal Susceptibility Profile and the Production of Virulence-Related Hydrolytic Enzymes in Brazilian Clinical Strains of Candida glabrata

Maria Helena Galdino Figueiredo-Carvalho; Lívia S. Ramos; Leonardo Silva Barbedo; Jean Carlos Almeida de Oliveira; André Luis Souza dos Santos; Rodrigo Almeida-Paes; Rosely Maria Zancopé-Oliveira

Candida glabrata is a facultative intracellular opportunistic fungal pathogen in human infections. Several virulence-associated attributes are involved in its pathogenesis, host-pathogen interactions, modulation of host immune defenses, and regulation of antifungal drug resistance. This study evaluated the in vitro antifungal susceptibility profile to five antifungal agents, the production of seven hydrolytic enzymes related to virulence, and the relationship between these phenotypes in 91 clinical strains of C. glabrata. All C. glabrata strains were susceptible to flucytosine. However, some of these strains showed resistance to amphotericin B (9.9%), fluconazole (15.4%), itraconazole (5.5%), or micafungin (15.4%). Overall, C. glabrata strains were good producers of catalase, aspartic protease, esterase, phytase, and hemolysin. However, caseinase and phospholipase in vitro activities were not detected. Statistically significant correlations were identified between micafungin minimum inhibitory concentration (MIC) and esterase production, between fluconazole and micafungin MIC and hemolytic activity, and between amphotericin B MIC and phytase production. These results contribute to clarify some of the C. glabrata mechanisms of pathogenicity. Moreover, the association between some virulence attributes and the regulation of antifungal resistance encourage the development of new therapeutic strategies involving virulence mechanisms as potential targets for effective antifungal drug development for the treatment of C. glabrata infections.


Mycopathologia | 2014

Comparison of Commercial Methods and the CLSI Broth Microdilution to Determine the Antifungal Susceptibility of Candida parapsilosis Complex Bloodstream Isolates from Three Health Institutions in Rio de Janeiro, Brazil

Maria Helena Galdino Figueiredo-Carvalho; Leonardo Silva Barbedo; Manoel Marques Evangelista Oliveira; Fábio Brito-Santos; Rodrigo Almeida-Paes; Rosely Maria Zancopé-Oliveira

Collaboration


Dive into the Leonardo Silva Barbedo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

André Luis Souza dos Santos

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Lívia S. Ramos

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lys A. Braga-Silva

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Mariangela Ziccardi

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Márcia R. Pinto

Federal Fluminense University

View shared research outputs
Researchain Logo
Decentralizing Knowledge