Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leonel van Zyl is active.

Publication


Featured researches published by Leonel van Zyl.


Plant Physiology | 2003

Photosynthetic Acclimation Is Reflected in Specific Patterns of Gene Expression in Drought-Stressed Loblolly Pine

Jonathan I. Watkinson; Allan A. Sioson; Cecilia Vasquez-Robinet; Maulik Shukla; Deept Kumar; Margaret Ellis; Lenwood S. Heath; Naren Ramakrishnan; Boris I. Chevone; Layne T. Watson; Leonel van Zyl; Ulrika Egertsdotter; Ronald R. Sederoff; Ruth Grene

Because the product of a single gene can influence many aspects of plant growth and development, it is necessary to understand how gene products act in concert and upon each other to effect adaptive changes to stressful conditions. We conducted experiments to improve our understanding of the responses of loblolly pine (Pinus taeda) to drought stress. Water was withheld from rooted plantlets of to a measured water potential of -1 MPa for mild stress and -1.5 MPa for severe stress. Net photosynthesis was measured for each level of stress. RNA was isolated from needles and used in hybridizations against a microarray consisting of 2,173 cDNA clones from five pine expressed sequence tag libraries. Gene expression was estimated using a two-stage mixed linear model. Subsequently, data mining via inductive logic programming identified rules (relationships) among gene expression, treatments, and functional categories. Changes in RNA transcript profiles of loblolly pine due to drought stress were correlated with physiological data reflecting photosynthetic acclimation to mild stress or photosynthetic failure during severe stress. Analysis of transcript profiles indicated that there are distinct patterns of expression related to the two levels of stress. Genes encoding heat shock proteins, late embryogenic-abundant proteins, enzymes from the aromatic acid and flavonoid biosynthetic pathways, and from carbon metabolism showed distinctive responses associated with acclimation. Five genes shown to have different transcript levels in response to either mild or severe stress were chosen for further analysis using real-time polymerase chain reaction. The real-time polymerase chain reaction results were in good agreement with those obtained on microarrays.


Plant Physiology | 2004

Microarray Analyses of Gene Expression during Adventitious Root Development in Pinus contorta

Monika Brinker; Leonel van Zyl; Wenbin Liu; Deborah Craig; Ronald R. Sederoff; David H. Clapham; Sara von Arnold

In order to investigate the gene expression pattern during adventitious root development, RNA of Pinus contorta hypocotyls, pulse-treated with the auxin indole-3-butyric acid and harvested at distinct developmental time points of root development, was hybridized to microarrays containing 2,178 cDNAs from Pinus taeda. Over the period of observation of root development, the transcript levels of 220 genes changed significantly. During the root initiation phase, genes involved in cell replication and cell wall weakening and a transcript encoding a PINHEAD/ZWILLE-like protein were up-regulated, while genes related to auxin transport, photosynthesis, and cell wall synthesis were down-regulated. In addition, there were changes in transcript abundance of genes related to water stress. During the root meristem formation phase the transcript abundances of genes involved in auxin transport, auxin responsive transcription, and cell wall synthesis, and of a gene encoding a B-box zinc finger-like protein, increased, while those encoding proteins involved in cell wall weakening decreased. Changes of transcript abundance of genes related to water stress during the root meristem formation and root formation phase indicate that the plant roots had become functional in water transport. Simultaneously, genes involved in auxin transport were up-regulated, while genes related to cell wall modification were down-regulated. Finally, during the root elongation phase down-regulation of transcripts encoding proteins involved in cell replication and stress occurred. Based on the observed changes in transcript abundances, we suggest hypotheses about the relative importance of various physiological processes during the auxin-induced development of roots in P. contorta.


Plant Physiology | 2003

The Effects of Polyethylene Glycol on Gene Expression of Developing White Spruce Somatic Embryos

Claudio Stasolla; Leonel van Zyl; Ulrika Egertsdotter; Deborah Craig; Wenbin Liu; Ronald R. Sederoff

Somatic embryogenic cultures of white spruce (Picea glauca) represent a valuable system to study molecular mechanisms regulating embryo development because many embryos of defined developmental stages can be generated. The inclusion of polyethylene glycol (PEG) in the maturation medium can improve the number and quality of embryos produced. To learn more about the mechanism of action of PEG, we analyzed transcript profiles of stage-specific embryos matured without (control) or with (PEG treated) PEG. RNA extracted from maturing spruce embryos was analyzed on DNA microarrays containing 2,178 cDNAs from loblolly pine (Pinus taeda). The efficiency of heterologous hybridization between spruce and pine species on microarrays has been documented previously (L. van Zyl, S. von Arnold, P. Bozhkov, Y. Chen, U. Egertsdotter, J. MacKay, R. Sederoff, J. Shen, L. Zelena, D. Clapham [2002] Comp Funct Genomics 3: 306–318). Several pine genes, including the apparent homologs to the Arabidopsis genes ZWILLE, FIDDLEHEAD, FUSCA, and SCARECROW, increased in expression after PEG treatments. These genes are known to be involved in the formation of the embryo body plan and in the control of the shoot and root apical meristems. The increased transcript levels of these genes in immature PEG-treated embryos suggest that PEG may improve the quality of spruce somatic embryos by promoting normal differentiation of the embryonic shoot and root. Changes in the transcript levels of many genes involved in sucrose catabolism and nitrogen assimilation and utilization were also observed between control and PEG-treated embryos.


Gene Expression Patterns | 2003

Up, down and up again is a signature global gene expression pattern at the beginning of gymnosperm embryogenesis

Leonel van Zyl; Peter V. Bozhkov; David H. Clapham; Ronald R. Sederoff; Sara von Arnold

Somatic embryogenesis of a gymnosperm, Picea abies, represents a sequence of specifically regulated developmental stages including proembryogenic mass (PEM), PEM-to-embryo transition, and early and late embryogeny. Here, we report cDNA array analysis of expression patterns of 373 genes in the beginning of P. abies embryo development. The analysis revealed a group of 107 genes (29% of arrayed cDNAs) which were upregulated upon PEM-to-embryo transition, then downregulated during early embryogeny and finally upregulated again at the beginning of late embryogeny. This major gene expression pattern was abrogated in a developmentally arrested cell line that is unable to pass through the PEM-to-embryo transition. Thirty-five genes (9.4% of arrayed cDNAs) were found to be differentially expressed during normal embryonic pattern formation. Among them, 22 genes (5.9% of arrayed cDNAs) were directly associated with embryo pattern formation and can be considered as marker genes for early stages of P. abies embryogenesis. The majority of the marker genes encode for proteins involved in translation and posttranslational modification. Among them, 18 genes displayed the major expression pattern.


Comparative and Functional Genomics | 2002

Heterologous array analysis in Pinaceae: hybridization of Pinus taeda cDNA arrays with cDNA from needles and embryogenic cultures of P. Taeda, P. Sylvestris or Picea abies.

Leonel van Zyl; Sara von Arnold; Peter V. Bozhkov; Yongzhong Chen; Ulrika Egertsdotter; John MacKay; Ronald R. Sederoff; Jing Shen; Lyubov Zelena; David H. Clapham

Hybridization of labelled cDNA from various cell types with high-density arrays of expressed sequence tags is a powerful technique for investigating gene expression. Few conifer cDNA libraries have been sequenced. Because of the high level of sequence conservation between Pinus and Picea we have investigated the use of arrays from one genus for studies of gene expression in the other. The partial cDNAs from 384 identifiable genes expressed in differentiating xylem of Pinus taeda were printed on nylon membranes in randomized replicates. These were hybridized with labelled cDNA from needles or embryogenic cultures of Pinus taeda, P. sylvestris and Picea abies, and with labelled cDNA from leaves of Nicotiana tabacum. The Spearman correlation of gene expression for pairs of conifer species was high for needles (r2 = 0.78 − 0.86), and somewhat lower for embryogenic cultures (r2 = 0.68 − 0.83). The correlation of gene expression for tobacco leaves and needles of each of the three conifer species was lower but sufficiently high (r2 = 0.52 − 0.63) to suggest that many partial gene sequences are conserved in angiosperms and gymnosperms. Heterologous probing was further used to identify tissue-specific gene expression over species boundaries. To evaluate the significance of differences in gene expression, conventional parametric tests were compared with permutation tests after four methods of normalization. Permutation tests after Z-normalization provide the highest degree of discrimination but may enhance the probability of type I errors. It is concluded that arrays of cDNA from loblolly pine are useful for studies of gene expression in other pines or spruces.


Comparative and Functional Genomics | 2002

Studying the functional genomics of stress responses in loblolly pine with the Expresso microarray experiment management system

Lenwood S. Heath; Naren Ramakrishnan; Ronald R. Sederoff; Ross W. Whetten; Boris I. Chevone; Craig A. Struble; Vincent Y. Jouenne; Dawei Chen; Leonel van Zyl; Ruth Grene

Conception, design, and implementation of cDNA microarray experiments present a variety of bioinformatics challenges for biologists and computational scientists. The multiple stages of data acquisition and analysis have motivated the design of Expresso, a system for microarray experiment management. Salient aspects of Expresso include support for clone replication and randomized placement; automatic gridding, extraction of expression data from each spot, and quality monitoring; flexible methods of combining data from individual spots into information about clones and functional categories; and the use of inductive logic programming for higher-level data analysis and mining. The development of Expresso is occurring in parallel with several generations of microarray experiments aimed at elucidating genomic responses to drought stress in loblolly pine seedlings. The current experimental design incorporates 384 pine cDNAs replicated and randomly placed in two specific microarray layouts. We describe the design of Expresso as well as results of analysis with Expresso that suggest the importance of molecular chaperones and membrane transport proteins in mechanisms conferring successful adaptation to long-term drought stress.


Plant Physiology and Biochemistry | 2003

Analysis of lignin produced by cinnamyl alcohol dehydrogenase-deficient Pinus taeda cultured cells

Claudio Stasolla; Jay T. Scott; Ulrika Egertsdotter; John F. Kadla; David O’Malley; Ronald R. Sederoff; Leonel van Zyl

Comparative studies were conducted on composition of lignin produced both in vivo and in vitro by cinnamyl alcohol dehydrogenase (CAD)-deficient mutant loblolly pine (Pinus taeda L.). In vivo studies were performed using differentiating xylem obtained from two genotypes of heterozygous (CAD/cad) and two genotypes of homozygous (cad/cad) CAD-deficient mutant trees. In vitro studies were performed using a culture system in which cells, generated from the same genotypes, were induced to produce lignin in culture. Steady state RNA levels and enzyme activity of CAD were dramatically reduced in both xylem and cultured cells obtained from homozygous mutant trees, compared to their heterozygous counterparts. Light microscopic studies showed pronounced differences during the lignin formation between homozygous and heterozygous cells. Phenolic compounds in the heterozygous (CAD/cad) cells were deposited around the cell wall, accumulated preferentially in vacuoles of the homozygous (cad/cad) cells. Differences in lignin composition as revealed by thioacidolysis were also observed. Lignin of both xylem tissue and cultured cells obtained from CAD-deficient homozygotes showed lower levels of coniferyl alcohols and significant enrichments in dihydroconiferyl alcohol (DHCA) and coniferyl aldehyde, compared to their heterozygous counterparts. The striking similarities in lignin composition observed both in vivo and in vitro, open new possibilities for the use of culture systems aimed at revealing the mechanisms controlling lignin biosynthesis, and the formation of DHCA subunits.


Plant Science | 2003

Transcript profiles of stress-related genes in developing white spruce (Picea glauca) somatic embryos cultured with polyethylene glycol

Claudio Stasolla; Leonel van Zyl; Ulrika Egertsdotter; Deborah Craig; Wenbin Liu; Ronald R. Sederoff

The effect of polyethylene glycol (PEG) on the transcript level of 512 stress-related genes was analyzed by cDNA microarray. Major changes in gene expression between control and PEG-treated embryos were observed during the initial stages of development, upon transfer of the embryogenic tissue on maturation medium, and during the late phases of development, culminating with the generation of cotyledonary embryos. Only small changes in gene expression were observed during the intermediate phases of embryo development. The transcript levels of several genes involved in cell aging and detoxification mechanisms, including peroxidases and chitinases, were developmentally regulated during the embryogenic process. Major differences in the expression of these genes were observed between control and PEG-treated embryos. Based on their expression profiles, four different clusters of genes involved in stress response mechanisms were identified. The first group of genes, which included several heat shock proteins, was up-regulated in PEG-treated immature embryos. An opposite tendency was observed for a second cluster of genes, which included a glutathione-S-transferase, and a cysteine protease. The third class included genes repressed by PEG in fully developed embryos, whereas a fourth group of genes, which included several heat shock proteins and ubiquitin, was induced in PEG-treated embryos at the end of the culture period. Difference in transcript levels and profiles of several genes involved in cell wall and lignin biosynthesis were also observed between control and PEG-treated embryos.


Tree Physiology | 2004

Variation in transcript abundance during somatic embryogenesis in gymnosperms

Claudio Stasolla; Peter V. Bozhkov; Tzu-Ming Chu; Leonel van Zyl; Ulrika Egertsdotter; Maria F. Suarez; Deborah Craig; Russ Wolfinger; Sara von Arnold; Ronald R. Sederoff


Journal of Experimental Botany | 2004

The effect of reduced glutathione on morphology and gene expression of white spruce (Picea glauca) somatic embryos

Claudio Stasolla; Mark F. Belmonte; Leonel van Zyl; Deborah Craig; Wenbin Liu; Edward C. Yeung; Ronald R. Sederoff

Collaboration


Dive into the Leonel van Zyl's collaboration.

Top Co-Authors

Avatar

Ronald R. Sederoff

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Ulrika Egertsdotter

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Deborah Craig

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wenbin Liu

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Sara von Arnold

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David H. Clapham

Swedish University of Agricultural Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge