Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leonid A. Neymark is active.

Publication


Featured researches published by Leonid A. Neymark.


Applied Geochemistry | 2002

U-Pb ages of secondary silica at Yucca Mountain, Nevada: implications for the paleohydrology of the unsaturated zone

Leonid A. Neymark; Yuri Amelin; James B. Paces; Zell E. Peterman

Abstract Uranium, Th and Pb isotopes were analyzed in layers of opal and chalcedony from individual mm- to cm-thick calcite and silica coatings at Yucca Mountain, Nevada, USA, a site that is being evaluated for a potential high-level nuclear waste repository. These calcite and silica coatings on fractures and in lithophysal cavities in Miocene-age tuffs in the unsaturated zone (UZ) precipitated from descending water and record a long history of percolation through the UZ. Opal and chalcedony have high concentrations of U (10 to 780 ppm) and low concentrations of common Pb as indicated by large values of 206Pb/204Pb (up to 53,806), thus making them suitable for U-Pb age determinations. Interpretations of U-Pb isotope systems in opal samples at Yucca Mountain are complicated by the incorporation of excess 234U at the time of mineral formation, resulting in reverse discordance of U-Pb ages. However, the 207Pb/235U ages are much less affected by deviation from initial secular equilibrium and provide reliable ages of most silica deposits between 0.6 and 9.8 Ma. For chalcedony subsamples showing normal age discordance, these ages may represent minimum times of deposition. Typically, 207Pb/235U ages are consistent with the microstratigraphy in the mineral coating samples, such that the youngest ages are for subsamples from outer layers, intermediate ages are from inner layers, and oldest ages are from innermost layers. 234U and 230Th in most silica layers deeper in the coatings are in secular equilibrium with 238U, which is consistent with their old age and closed system behavior during the past ∼0.5 Ma. The ages for subsamples of silica layers from different microstratigraphic positions in individual calcite and silica coating samples collected from lithophysal cavities in the welded part of the Topopah Spring Tuff yield slow long-term average growth rates of 1 to 5 mm/Ma. These data imply that the deeper parts of the UZ at Yucca Mountain maintained long-term hydrologic stability over the past 10 Ma. despite significant climate variations. U-Pb ages for subsamples of silica layers from different microstratigraphic positions in individual calcite and silica coating samples collected from fractures in the shallower part of the UZ (welded part of the overlying Tiva Canyon Tuff) indicate larger long-term average growth rates up to 23 mm/Ma and an absence of recently deposited materials (ages of outermost layers are 3–5 Ma.). These differences between the characteristics of the coatings for samples from the shallower and deeper parts of the UZ may indicate that the nonwelded tuffs (PTn), located between the welded parts of the Tiva Canyon and Topopah Spring Tuffs, play an important role in moderating UZ flow.


Geochimica et Cosmochimica Acta | 2000

206Pb-230Th-234U-238U and 207Pb-235U geochronology of Quaternary opal, Yucca Mountain, Nevada

Leonid A. Neymark; Yuri Amelin; James B. Paces

Abstract U–Th–Pb isotopic systems have been studied in submillimeter-thick outermost layers of Quaternary opal occurring in calcite–silica fracture and cavity coatings within Tertiary tuffs at Yucca Mountain, Nevada, USA. These coatings preserve a record of paleohydrologic conditions at this site, which is being evaluated as a potential high-level nuclear waste repository. The opal precipitated from groundwater is variably enriched in 234U (measured 234U/238U activity ratio 1.124–6.179) and has high U (30–313 ppm), low Th (0.008–3.7 ppm), and low common Pb concentrations (measured 206Pb/204Pb up to 11,370). It has been demonstrated that the laboratory acid treatment used in this study to clean sample surfaces and to remove adherent calcite, did not disturb U–Th–Pb isotopic systems in opal. The opal ages calculated from 206Pb∗/238U and 207Pb∗/235U ratios display strong reverse discordance because of excess radiogenic 206Pb∗ derived from the elevated initial 234U. The data are best interpreted using projections of a new four-dimensional concordia diagram defined by 206Pb∗/238U, 207Pb∗/235U, 234U/238Uactivity, and 230Th/238Uactivity. Ages and initial 234U/238U activity ratios have been calculated using different projections of this diagram and tested for concordance. The data are discordant, that is observed 207Pb∗/235U ages of 170 ± 32 (2σ) to 1772 ± 40 ka are systematically older than 230Th/U ages of 34.1 ± 0.6 to 452 ± 32 ka. The age discordance is not a result of migration of uranium and its decay products under the open system conditions, but a consequence of noninstantaneous growth of opal. Combined U–Pb and 230Th/U ages support the model of slow mineral deposition at the rates of millimeters per million years resulting in layering on a scale too fine for mechanical sampling. In this case, U–Pb ages provide more accurate estimates of the average age for mixed multiage samples than 230Th/U ages, because ages based on shorter-lived isotopes are nonlinearly biased by younger mineral additions. Use of the combined U–Th–Pb technique to date Yucca Mountain Quaternary opals significantly extends the age range beyond that of the 230Th/U dating method and shows that selected fracture pathways in the unsaturated zone felsic tuffs of Yucca Mountain have been active throughout the Quaternary.


Applied Geochemistry | 2002

Uranium-series disequilibrium in tuffs from Yucca Mountain, Nevada, as evidence of pore-fluid flow over the last million years

M. Gascoyne; N.H. Miller; Leonid A. Neymark

Abstract Samples of tuff from boreholes drilled into fault zones in the Exploratory Studies Facility (ESF) and relatively unfractured rock of the Cross Drift tunnels, at Yucca Mountain, Nevada, have been analysed by U-series methods. This work is part of a project to verify the finding of fast flow-paths through the tuff to ESF level, indicated by the presence of ‘bomb’ 36Cl in pore fluids. Secular radioactive equilibrium in the U decay series, (i.e. when the radioactivity ratios 234U/238U, 230Th /234U and 226Ra/230Th all equal 1.00) might be expected if the tuff samples have not experienced radionuclide loss due to rock-water interaction occurring within the last million years. However, most fractured and unfractured samples were found to have a small deficiency of 234U (weighted mean 234U/238U=0.95±0.01) and a small excess of 230Th (weighted mean 230Th/234U 1.10±0.02). The 226Ra/230Th ratios are close to secular equilibrium (weighted mean=0.94±0.07). These data indicate that 234U has been removed from the rock samples in the last ∼350 ka, probably by pore fluids. Within the precision of the measurement, it would appear that 226Ra has not been mobilized and removed from the tuff, although there may be some localised 226Ra redistribution as suggested by a few ratio values that are significantly different from 1.0. Because both fractured and unfractured tuffs show approximately the same deficiency of 234U, this indicates that pore fluids are moving equally through fractured and unfractured rock. More importantly, fractured rock appears not to be a dominant pathway for groundwater flow (otherwise the ratio would be more strongly affected and the Th and Ra isotopic ratios would likely also show disequilibrium). Application of a simple mass-balance model suggests that surface infiltration rate is over an order of magnitude greater than the rate indicated by other infiltration models and that residence time of pore fluids at ESF level is about 400 a. Processes of U sorption, precipitation and re-solution are believed to be occurring and would account for these anomalous results but have not been included in the model. Despite the difficulties, the U-series data suggest that fractured rock, specifically the Sundance and Drill Hole Wash faults, are not preferred flow paths for groundwater flowing through the Topopah Spring tuff and, by implication, rapid-flow, within 50 a, from the surface to the level of the ESF is improbable.


Earth and Planetary Science Letters | 1997

Effects of interaction between ultramafic tectonite and mafic magma on Nd-Pb-Sr isotopic systems in the Neoproterozoic Chaya Massif, Baikal-Muya ophiolite belt

Yuri Amelin; Eugeni Yu. Ritsk; Leonid A. Neymark

Sm-Nd, Rb-Sr and U-Pb isotopic systems have been studied in minerals and whole rocks of harzburgites and mafic cumulates from the Chaya Massif, Baikal-Muya ophiolite belt, eastern Siberia, in order to determine the relationship between mantle ultramafic and crustal mafic sections. Geological relations in the Chaya Massif indicate that the mafic magmas were emplaced into, and interacted with older solid peridotite. Hand picked, acid-leached, primary rock-forming and accessory minerals (olivine, orthopyroxene, clinopyroxene and plagioclase) from the two harzburgite samples show coherent behavior and yield147Sm/144Nd-143Nd/144Nd and238U/204Pb-206Pb/204Pb mineral isochrons, corresponding to ages of 640 ± 58 Ma (95% confidence level) and 620 ± 71 Ma, respectively. These values are indistinguishable from the crystallization age of the Chaya mafic units of 627 ± 25 Ma (a weighted average of internal isochron Sm-Nd ages of four mafic cumulates). The Rb-Sr and Sm-Nd isotopic systems in the harzburgite whole-rock samples were disturbed by hydrothermal alteration. These alteration-related isotopic shifts mimic the trend of variations in primary isotopic compositions in the mafic sequence, thus emphasizing that isotopic data for ultramafic rocks should be interpreted with great caution. On the basis of initial Sr and Nd values, ultramafic and mafic rocks of the Chaya Massif can be divided into two groups: (1) harzburgites and the lower mafic unit gabbronorites witheNd = +6.6 to +7.1 andeSr = −11 to −16; and (2) websterite of the lower unit and gabbronorites of the upper mafic unit:eNd = +4.6 to +6.1 andeSr = −8 to −9. Initial Pb isotopic ratios are identical in all rocks studied, with mean values of206Pb/204Pb= 16.994 ± 0.023 and207Pb/204Pb= 15.363 ± 0.015. The similarity of ages and initial isotopic ratios within the first group indicates that the isotopic systems in the pre-existing depleted peridotite were reset by extensive interaction with basaltic magma during formation of the mafic crustal sequence. The isotopic data agree with a hypothesized formation of the Chaya Massif in a suprasubduction-zone environment.


Journal of Contaminant Hydrology | 2003

Estimation of past seepage volumes from calcite distribution in the Topopah Spring Tuff, Yucca Mountain, Nevada

Brian D. Marshall; Leonid A. Neymark; Zell E. Peterman

Low-temperature calcite and opal record the past seepage of water into open fractures and lithophysal cavities in the unsaturated zone at Yucca Mountain, Nevada, site of a proposed high-level radioactive waste repository. Systematic measurements of calcite and opal coatings in the Exploratory Studies Facility (ESF) tunnel at the proposed repository horizon are used to estimate the volume of calcite at each site of calcite and/or opal deposition. By estimating the volume of water required to precipitate the measured volumes of calcite in the unsaturated zone, seepage rates of 0.005 to 5 liters/year (l/year) are calculated at the median and 95th percentile of the measured volumes, respectively. These seepage rates are at the low end of the range of seepage rates from recent performance assessment (PA) calculations, confirming the conservative nature of the performance assessment. However, the distribution of the calcite and opal coatings indicate that a much larger fraction of the potential waste packages would be contacted by this seepage than is calculated in the performance assessment.


Geosphere | 2014

40Ar/39Ar geochronology, isotope geochemistry (Sr, Nd, Pb), and petrology of alkaline lavas near Yampa, Colorado: Migration of alkaline volcanism and evolution of the northern Rio Grande rift

Michael A. Cosca; Ren A. Thompson; John P. Lee; Kenzie J. Turner; Leonid A. Neymark; Wayne R. Premo

Volcanic rocks near Yampa, Colorado (USA), represent one of several small late Miocene to Quaternary alkaline volcanic fields along the northeast margin of the Colorado Plateau. Basanite, trachybasalt, and basalt collected from six sites within the Yampa volcanic field were investigated to assess correlations with late Cenozoic extension and Rio Grande rifting. In this paper we report major and trace element rock and mineral compositions and Ar, Sr, Nd, and Pb isotope data for these volcanic rocks. High-precision 40 Ar/ 39 Ar geochronology indicates westward migration of volcanism within the Yampa volcanic field between 6 and 4.5 Ma, and the Sr, Nd, and Pb isotope values are consistent with a primary source in the Proterozoic subcontinental lithospheric mantle. Relict olivine phenocrysts have Mg- and Ni-rich cores, whereas unmelted clinopyroxene cores are Na and Si enriched with finely banded Ca-, Mg-, Al-, and Ti-enriched rims, thus tracing their crystallization history from a lithospheric mantle source region to one in contact with melt prior to eruption. A regional synthesis of Neogene and younger volcanism within the Rio Grande rift corridor, from northern New Mexico to southern Wyoming, supports a systematic overall southwest migration of alkaline volcanism. We interpret this Neogene to Quaternary migration of volcanism toward the northeast margin of the Colorado Plateau to record passage of melt through subvertical zones within the lithosphere weakened by late Cenozoic extension. If the locus of Quaternary alkaline magmatism defines the current location of the Rio Grande rift, it includes the Leucite Hills, Wyoming. We suggest that alkaline volcanism in the incipient northern Rio Grande rift, north of Leadville, Colorado, represents melting of the subcontinental lithospheric mantle in response to transient infiltration of asthenospheric mantle into deep, subvertical zones of dilational crustal weakness developed during late Cenozoic extension that have been migrating toward, and subparallel to, the northeast margin of the Colorado Plateau since the middle Miocene. Quaternary volcanism within this northern Rio Grande rift corridor is evidence that the rift is continuing to evolve.


Other Information: PBD: 1995 | 1995

Geochemical and PB, SR, and O isotopic study of the Tiva Canyon Tuff and Topopah Spring Tuff, Yucca Mountain, Nye County, Nevada

Leonid A. Neymark; Brian D. Marshall; Loretta Kwak; Kiyoto Futa; Shannon A. Mahan

Yucca Mountain is currently being studied as a potential site for an underground repository for high-level radioactive waste. One aspect of the site characterization studies is an evaluation o the resource potential at Yucca Mountain. Geochemical and isotopic signatures of past alteration of the welded tuffs that underlie Yucca Mountain provide a means of assessing the probability of hydrothermal ore deposits being present within Yucca Mountain. In this preliminary report, geochemical and isotopic measurements of altered Tiva Canyon Tuff and Topopah Spring Tuff collected from fault zones exposed on the east flank of Yucca Mountain and from one drill core are compared to their unaltered equivalents sampled both in outcrop and drill core. The geochemistry and isotopic compositions of unaltered Tiva Canyon Tuff and Topopah Spring Tuff (high-silica rhyolite portions) are fairly uniform; these data provide a good baseline for comparisons with the altered samples. Geochemical analyses indicate that the brecciated tuffs are characterized by addition of calcium carbonate and opaline silica; this resulted in additions of calcium and strontium,increases in oxygen-18 content, and some redistribution of trace elements. After leaching the samples to remove authigenic carbonate, no differences in strontium or lead isotope compositions between altered and unaltered sections were observed. These data show that although localized alteration of the tuffs has occurred and affected their geochemistry, there is no indication of additions of exotic components. The lack of evidence for exotic strontium and lead in the most severely altered tuff samples at Yucca Mountain strongly implies a similar lack of exotic base or precious metals.


Geology | 2012

Direct U-Pb dating of Cretaceous and Paleocene dinosaur bones, San Juan Basin, New Mexico: COMMENT

Alan E. Koenig; Spencer G. Lucas; Leonid A. Neymark; Andrew B. Heckert; Robert M. Sullivan; Steven E. Jasinski; Denver W. Fowler

Based on U-Pb dating of two dinosaur bones from the San Juan Basin of New Mexico (United States), [Fassett et al. (2011)][1] claim to provide the first successful direct dating of fossil bones and to establish the presence of Paleocene dinosaurs. Fassett et al. ignore previously published work that


Journal of Analytical Atomic Spectrometry | 2017

Evaluation of laser ablation double-focusing SC-ICPMS for “common” lead isotopic measurements in silicate glasses and minerals

Aaron J. Pietruszka; Leonid A. Neymark

An analytical method for the in situ measurement of “common” Pb isotope ratios in silicate glasses and minerals using a 193 nm excimer laser ablation (LA) system with a double-focusing single-collector (SC)-ICPMS is presented and evaluated as a possible alternative to multiple-collector (MC)-ICPMS. This LA-SC-ICPMS technique employs fast-scanning ion deflectors to sequentially place a series of flat-topped isotope peaks into a single ion-counting detector at a fixed accelerating voltage and magnetic field strength. Reference materials (including NIST, MPI-DING, and USGS glasses) are used to identify two analytical artifacts on the Pb isotope ratios (expressed here as heavier/lighter isotopes) when corrected for mass bias relative to NIST SRM610. The first artifact is characterized by anomalously low Pb isotope ratios (∼0.1% per AMU) when SRM610 is analyzed in raster mode as an unknown at small spot sizes ( 5 ppm) by LA-SC-ICPMS is unlikely, and in this case, LA-MC-ICPMS remains the preferable analytical technique.


Science of The Total Environment | 2016

A millennial-scale record of Pb and Hg contamination in peatlands of the Sacramento-San Joaquin Delta of California, USA.

Judith Z. Drexler; Charles N. Alpers; Leonid A. Neymark; James B. Paces; Howard E. Taylor; Christopher C. Fuller

In this paper, we provide the first record of millennial patterns of Pb and Hg concentrations on the west coast of the United States. Peat cores were collected from two micro-tidal marshes in the Sacramento-San Joaquin Delta of California. Core samples were analyzed for Pb, Hg, and Ti concentrations and dated using radiocarbon and (210)Pb. Pre-anthropogenic concentrations of Pb and Hg in peat ranged from 0.60 to 13.0μgg(-1)and from 6.9 to 71ngg(-1), respectively. For much of the past 6000+ years, the Delta was free from anthropogenic pollution, however, beginning in ~1425CE, Hg and Pb concentrations, Pb/Ti ratios, Pb enrichment factors (EFs), and HgEFs all increased. Pb isotope compositions of the peat suggest that this uptick was likely caused by smelting activities originating in Asia. The next increases in Pb and Hg contamination occurred during the California Gold Rush (beginning ~1850CE), when concentrations reached their highest levels (74μgg(-1) Pb, 990ngg(-1) Hg; PbEF=12 and HgEF=28). Lead concentrations increased again beginning in the ~1920s with the incorporation of Pb additives in gasoline. The phase-out of lead additives in the late 1980s was reflected in changes in Pb isotope ratios and reductions in Pb concentrations in the surface layers of the peat. The rise and subsequent fall of Hg contamination was also tracked by the peat archive, with the highest Hg concentrations occurring just before 1963CE and then decreasing during the post-1963 period. Overall, the results show that the Delta was a pristine region for most of its ~6700-year existence; however, since ~1425CE, it has received Pb and Hg contamination from both global and regional sources.

Collaboration


Dive into the Leonid A. Neymark's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zell E. Peterman

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Brian D. Marshall

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Yuri Amelin

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Charles N. Alpers

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Joseph F. Whelan

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Judith Z. Drexler

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Richard J. Moscati

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge