Leonid Chernin
Hebrew University of Jerusalem
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Leonid Chernin.
Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2002
Ada Viterbo; Ofir Ramot; Leonid Chernin; Ilan Chet
The use of specific mycolytic soil microorganisms to control plant pathogens is an ecological approach to overcome the problems caused by standard chemical methods of plant protection. The ability to produce lytic enzymes is a widely distributed property of rhizosphere-competent fungi and bacteria. Due to the higher activity of Trichoderma spp. lytic enzymes as compared to the same class of enzymes from other microorganisms and plants, effort is being aimed at improving biocontrol agents and plants by introducing Trichoderma genes via genetic manipulations. An overview is presented of the data currently available on lytic enzymes from the mycoparasitic fungus Trichoderma.
Fems Microbiology Letters | 2010
Ada Viterbo; Udi Landau; Sofia Kim; Leonid Chernin; Ilan Chet
1-aminocyclopropane-1-carboxylate (ACC) deaminase activity was evaluated in the biocontrol and plant growth-promoting fungus Trichoderma asperellum T203. Fungal cultures grown with ACC as the sole nitrogen source showed high enzymatic activity. The enzyme encoding gene (Tas-acdS) was isolated, and an average 3.5-fold induction of the gene by 3 mM ACC was detected by real-time PCR. Escherichia coli bacteria carrying the intron-free cDNA of Tas-acdS cloned into the vector pAlter-EX1 under the control of the tac promoter revealed specific ACC deaminase (ACCD) activity and the ability to promote canola (Brassica napus) root elongation in pouch assays. RNAi silencing of the ACCD gene in T. asperellum showed decreased ability of the mutants to promote root elongation of canola seedlings. These data suggest a role for ACCD in the plant root growth-promotion effect by T. asperellum.
FEMS Microbiology Ecology | 2009
Henry Müller; Christian Westendorf; Erich Leitner; Leonid Chernin; Kathrin Riedel; Silvia Schmidt; Leo Eberl; Gabriele Berg
The rhizosphere-associated bacterium Serratia plymuthica HRO-C48 is not only able to suppress symptoms caused by soil-borne pathogens but is also able to stimulate growth of plants. Detailed knowledge about the underlying mechanisms and regulation are crucial for the application in biocontrol strategies. To analyse the influence of N-acyl homoserine lactone (AHL)-mediated communication on the biocontrol activity, the AHL-degrading lactonase AiiA was heterologously expressed in the strain, resulting in abolished AHL production. The comparative analysis of the wild type and AHL negative mutants led to the identification of new AHL-regulated phenotypes. In the pathosystem Verticillium dahliae-oilseed rape, the essential role of AHL-mediated signaling for disease suppression was demonstrated. In vitro, the regulatory function of AHLs in the synthesis of the plant growth hormone indole-3-acetic acid is shown for the first time. Additionally, swimming motility was found to be negatively AHL regulated. In contrast, production of extracellular hydrolytic enzymes is shown to be positively AHL-regulated. HRO-C48 emits a broad spectrum of volatile organic compounds that are involved in antifungal activity and, interestingly, whose relative abundances are influenced by quorum sensing (QS). This study shows that QS is crucial for biocontrol activity of S. plymuthica and discusses the impact for the application of the strain as a biocontrol agent.
Current Microbiology | 1996
Leonid Chernin; Alexander Brandis; Zafar Ismailov; Ilan Chet
Abstract. Strain IC1270 of Enterobacter agglomerans has been previously described as a producer of a complex of chitinolytic enzymes and as an antagonist of many fungal phytopathogens [Chernin et al. (1995) Appl. Env. Microbiol. 61:1720–1726]. Here we show that this strain also produces an antibiotic that was purified by TLC and HPLC and identified by UV, IR, MS, and NMR analyses as pyrrolnitrin [3-chloro-4-(2′-nitro-3′-chlorophenyl)pyrrole]. The purified antibiotic is efficient against many phytopathogenic bacteria and fungi in vitro. This is the first piece of evidence showing that pyrrolnitrin can be produced by bacteria other than Pseudomonas and that one bacterial strain can simultaneously produce chitinolytic enzymes and pyrrolnitrin. The possible role of a combination of chitinases and pyrrolnitrin in antagonism is discussed.
Journal of Bacteriology | 2004
Marianna Ovadis; Xiaoguang Liu; Sagi Gavriel; Zafar Ismailov; Ilan Chet; Leonid Chernin
The biocontrol activity of various fluorescent pseudomonads towards plant-pathogenic fungi is dependent upon the GacA/GacS-type two-component system of global regulators and the RpoS transcription sigma factor. In particular, these components are required for the production of antifungal antibiotics and exoenzymes. To investigate the effects of these global regulators on the expression of biocontrol factors by plant-associated bacteria other than Pseudomonas spp., gacA/gacS and rpoS homologues were cloned from biocontrol strain IC1270 of Serratia plymuthica, which produces a set of antifungal compounds, including chitinolytic enzymes and the antibiotic pyrrolnitrin. The nucleotide and deduced protein sequence alignments of the cloned gacA/gacS-like genes-tentatively designated grrA (global response regulation activator) and grrS (global response regulation sensor) and of the cloned rpoS gene revealed 64 to 93% identity with matching genes and proteins of the enteric bacteria Escherichia coli, Pectobacterium carotovora subsp. carotovora, and Serratia marcescens. grrA, grrS, and rpoS gene replacement mutants of strain IC1270 were deficient in the production of pyrrolnitrin, an exoprotease, and N-acylhomoserine lactone quorum-sensing signal molecules. However, neither mutant appeared to differ from the parental strain in the production of siderophores, and only grrA and grrS mutants were deficient in the production of a 58-kDa endochitinase, representing the involvement of other sigma factors in the regulation of strain IC1270s chitinolytic activity. Compared to the parental strain, the grrA, grrS, and rpoS mutants were markedly less capable of suppressing Rhizoctonia solani and Pythium aphanidermatum under greenhouse conditions, indicating the dependence of strain IC1270s biocontrol property on the GrrA/GrrS and RpoS global regulators.
Journal of Applied Microbiology | 2011
N. Dandurishvili; Natela Toklikishvili; Marianna Ovadis; P. Eliashvili; N. Giorgobiani; R. Keshelava; M. Tediashvili; Alexander Vainstein; I. A. Khmel; E. Szegedi; Leonid Chernin
Aim: To examine the biocontrol activity of broad‐range antagonists Serratia plymuthica IC1270, Pseudomonas fluorescens Q8r1‐96 and P. fluorescens B‐4117 against tumourigenic strains of Agrobacterium tumefaciens and A. vitis.
European Journal of Plant Pathology | 2009
Yandong Pang; Xiaoguang Liu; Yingxin Ma; Leonid Chernin; Gabriele Berg; Kexiang Gao
Quorum sensing regulation, mediated by N-acyl homoserine lactone signals, produced by strain Serratia plymuthica HRO-C48 isolated from the rhizosphere of oilseed rape, was found to be responsible for this strain’s ability to produce the broad spectrum antibiotic pyrrolnitrin. In this study, we have shown that some other biocontrol-related traits of strain HRO-C48, such as protection of cucumbers against Pythium apahnidermatum damping-off disease, induced systemic resistance to Botrytis cinerea grey mold in bean and tomato plants, and that colonisation of the rhizosphere also depends on AHL signalling. The results prove that quorum sensing regulation may be generally involved in interactions between plant-associated bacteria, fungal pathogens and host plants.
BMC Plant Biology | 2009
David De Vleesschauwer; Leonid Chernin; Monica Höfte
BackgroundInduced resistance is a state of enhanced defensive capacity developed by a plant reacting to specific biotic or chemical stimuli. Over the years, several forms of induced resistance have been characterized, including systemic acquired resistance, which is induced upon localized infection by an avirulent necrotizing pathogen, and induced systemic resistance (ISR), which is elicited by selected strains of nonpathogenic rhizobacteria. However, contrary to the relative wealth of information on inducible defense responses in dicotyledoneous plants, our understanding of the molecular mechanisms underlying induced resistance phenomena in cereal crops is still in its infancy. Using a combined cytomolecular and pharmacological approach, we analyzed the host defense mechanisms associated with the establishment of ISR in rice by the rhizobacterium Serratia plymuthica IC1270.ResultsIn a standardized soil-based assay, root treatment with IC1270 rendered foliar tissues more resistant to the hemibiotrophic pathogen Magnaporthe oryzae, causal agent of the devastating rice blast disease. Analysis of the cytological and biochemical alterations associated with restriction of fungal growth in IC1270-induced plants revealed that IC1270 primes rice for enhanced attacker-induced accumulation of reactive oxygen species (ROS) and autofluorescent phenolic compounds in and near epidermal cells displaying dense cytoplasmic granulation. Similar, yet more abundant, phenotypes of hypersensitively dying cells in the vicinity of fungal hyphae were evident in a gene-for-gene interaction with an avirulent M. oryzae strain, suggesting that IC1270-inducible ISR and R protein conditioned effector-triggered immunity (ETI) target similar defense mechanisms. Yet, this IC1270-inducible ISR response seems to act as a double-edged sword within the rice defense network as induced plants displayed an increased vulnerability to the necrotrophic pathogens Rhizoctonia solani and Cochliobolus miyabeanus. Artificial enhancement of ROS levels in inoculated leaves faithfully mimicked the opposite effects of IC1270 bacteria on aforementioned pathogens, suggesting a central role for oxidative events in the IC1270-induced resistance mechanism.ConclusionBesides identifying ROS as modulators of antagonistic defense mechanisms in rice, this work reveals the mechanistic similarities between S. plymuthica-mediated ISR and R protein-dictated ETI and underscores the importance of using appropriate innate defense mechanisms when breeding for broad-spectrum rice disease resistance.
Environmental Microbiology Reports | 2011
Leonid Chernin; Natela Toklikishvili; Marianna Ovadis; Sofia Kim; Julius Ben-Ari; I. A. Khmel; Alexander Vainstein
We show that volatile organic compounds (VOCs) produced by rhizospheric strains Pseudomonas fluorescens B-4117 and Serratia plymuthica IC1270 may act as inhibitors of the cell-cell communication quorum-sensing (QS) network mediated by N-acyl homoserine lactone (AHL) signal molecules produced by various bacteria, including strains of Agrobacterium, Chromobacterium, Pectobacterium and Pseudomonas. This quorum-quenching effect was observed when AHL-producing bacteria were treated with VOCs emitted by strains B-4117 and IC1270 or with dimethyl disulfide (DMDS), the major volatile produced by strain IC1270. LC-MS/MS analysis revealed that treatment of strains Pseudomonas chlororaphis 449, Pseudomonas aeruginosa PAO1 or Ps. fluorescens 2-79 with VOCs emitted by strain IC1270 or DMDS drastically decreases the amount of AHLs produced by these bacteria. Volatile organic compounds produced by Ps. chlororaphis 449 were able to suppress its own QS-induction activity, suggesting a negative interaction between VOCs and AHL molecules in the same strain. Quantitative RT-PCR analysis showed that treatment of Ps. chlororaphis 449 with VOCs emitted by cells of IC1270, B-4117 or 449 itself, or with DMDS, leads to significant suppression of transcription of AHL synthase genes phzI and csaI. Thus, along with AHLs, bacterial volatiles might be considered another type of signal molecule involved in microbial communication in the rhizosphere.
Folia Microbiologica | 2005
A. Madmony; Leonid Chernin; S. Pleban; E. Peleg; J. Riov
Enterobacter cloacae was found to be associated with the pollen of several Mediterranean pines. The bacterium was detected only in mature pollen ofPinus halepensis, P. brutia, andP. pinea. E. cloacae is considered to be an obligatory endophyte based on its occurrence in disinfected male cones and the successful inoculation of seedlings of the above 3 species withE. cloacae AS1 isolated from pollen ofP. halepensis used as a model strain. Strain AS1 was able to produce indolyl-3-acetic acid (IAA) froml-tryptophan in culture, and this was probably the source of the increased IAA content in the germination medium of pollen. In addition, strain AS1 promoted adventitious root formation in mung bean (Vigna radiata) cuttings. However, it was not possible to obtain bacterium-free pollen to elucidate its role in pollen germination.