Leonid P. Savtchenko
University College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Leonid P. Savtchenko.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Leonid P. Savtchenko; Dmitri A. Rusakov
Signal integration in the brain is determined by the size and kinetics of rapid synaptic responses. The latter, in turn, depends on the concentration profile of neurotransmitter in the synaptic cleft. According to a traditional view, narrower clefts should correspond to higher intracleft concentrations of neurotransmitter, and therefore to the enhanced activation of synaptic receptors. Here, we argue that narrowing the cleft also increases electrical resistance of the intracleft medium and therefore reduces local receptor currents. We employ detailed theoretical analyses and Monte Carlo simulations to propose that these two contrasting phenomena result in a relatively narrow range of cleft heights at which the synaptic receptor current reaches its maximum. Over a physiological range of synaptic parameters, the “optimum” height falls between ≈12 and 20 nm. This range is consistent with the structure of central synapses reported by electron microscopy. Therefore, our results suggest that a simple fundamental principle may underlie the synaptic cleft architecture: to maximize synaptic strength.
The Journal of Neuroscience | 2009
Ivan Pavlov; Leonid P. Savtchenko; Dimitri M. Kullmann; Alexey Semyanov; Matthew C. Walker
Hippocampal pyramidal cell excitability is regulated both by fast synaptic inhibition and by tonically active high-affinity extrasynaptic GABAA receptors. The impact of tonic inhibition on neuronal gain and offset, and thus on information processing, is unclear. Offset is altered by shunting inhibition, and the gain of a neuronal response to an excitatory input can be modified by changing the level of “background” synaptic noise. Therefore, tonic activation of GABAA receptors would be expected to modulate offset and, in addition, to alter gain through a shunting effect on synaptic noise. Here we show that tonically active GABAA receptors in CA1 pyramidal cells show marked outward rectification, while the peaks of IPSCs exhibit a linear current–voltage relationship. As a result, tonic GABAA receptor-mediated currents have a minimal effect upon subthreshold membrane potential variation due to synaptic noise, but predominantly affect neurons at spiking threshold. Consistent with this, tonic GABAA receptor-mediated currents in pyramidal cells exclusively affect offset and not gain. Modulation of tonically active GABAA receptors by fluctuations in extracellular GABA concentrations or neuromodulators acting on high-affinity receptors potentially provides a powerful mechanism to alter neuronal offset independently of neuronal gain.
Nature Communications | 2011
Inseon Song; Leonid P. Savtchenko; Alexey Semyanov
Inhibition is a physiological process that decreases the probability of a neuron generating an action potential. The two main mechanisms that have been proposed for inhibition are hyperpolarization and shunting. Shunting results from increased membrane conductance, and it reduces the neuron-firing probability. Here we show that ambient GABA, the main inhibitory neurotransmitter in the brain, can excite adult hippocampal interneurons. In these cells, the GABAA current reversal potential is depolarizing, making baseline tonic GABAA conductance excitatory. Increasing the tonic conductance enhances shunting-mediated inhibition, which eventually overpowers the excitation. Such a biphasic change in interneuron firing leads to corresponding changes in the GABAA-mediated synaptic signalling. The described phenomenon suggests that the excitatory or inhibitory actions of the current are set not only by the reversal potential, but also by the conductance.
Neuron | 2014
Angela Maria Vergnano; Nelson Rebola; Leonid P. Savtchenko; Paulo S. Pinheiro; Mariano Casado; Brigitte L. Kieffer; Dmitri A. Rusakov; Christophe Mulle; Pierre Paoletti
Decades after the discovery that ionic zinc is present at high levels in glutamatergic synaptic vesicles, where, when, and how much zinc is released during synaptic activity remains highly controversial. Here we provide a quantitative assessment of zinc dynamics in the synaptic cleft and clarify its role in the regulation of excitatory neurotransmission by combining synaptic recordings from mice deficient for zinc signaling with Monte Carlo simulations. Ambient extracellular zinc levels are too low for tonic occupation of the GluN2A-specific nanomolar zinc sites on NMDA receptors (NMDARs). However, following short trains of physiologically relevant synaptic stimuli, zinc transiently rises in the cleft and selectively inhibits postsynaptic GluN2A-NMDARs, causing changes in synaptic integration and plasticity. Our work establishes the rules of zinc action and reveals that zinc modulation extends beyond hippocampal mossy fibers to excitatory SC-CA1 synapses. By specifically moderating GluN2A-NMDAR signaling, zinc acts as a widespread activity-dependent regulator of neuronal circuits.
Trends in Neurosciences | 2011
Dmitri A. Rusakov; Leonid P. Savtchenko; Kaiyu Zheng; Jeremy M. Henley
Rapid communication in the brain relies on the release and diffusion of small transmitter molecules across the synaptic cleft. How these diffuse signals are transformed into cellular responses is determined by the scatter of target postsynaptic receptors, which in turn depends on receptor movement in cell membranes. Thus, by shaping information transfer in neural circuits, mechanisms that regulate molecular mobility affect nearly every aspect of brain function and dysfunction. Here we review two facets of molecular mobility that have traditionally been considered separately, namely extracellular and intra-membrane diffusion. By focusing on the interplay between these processes we illustrate the remarkable versatility of signal formation in synapses and highlight areas of emerging understanding in the molecular physiology and biophysics of synaptic transmission.
Science | 2008
Sergiy Sylantyev; Leonid P. Savtchenko; Yin-Ping Niu; Anton Ivanov; Thomas P. Jensen; Dimitri M. Kullmann; Min-Yi Xiao; Dmitri A. Rusakov
The synaptic response waveform, which determines signal integration properties in the brain, depends on the spatiotemporal profile of neurotransmitter in the synaptic cleft. Here, we show that electrophoretic interactions between AMPA receptor–mediated excitatory currents and negatively charged glutamate molecules accelerate the clearance of glutamate from the synaptic cleft, speeding up synaptic responses. This phenomenon is reversed upon depolarization and diminished when intracleft electric fields are weakened through a decrease in the AMPA receptor density. In contrast, the kinetics of receptor-mediated currents evoked by direct application of glutamate are voltage-independent, as are synaptic currents mediated by the electrically neutral neurotransmitter GABA. Voltage-dependent temporal tuning of excitatory synaptic responses may thus contribute to signal integration in neural circuits.
Nature Communications | 2011
Ivan Pavlov; Annalisa Scimemi; Leonid P. Savtchenko; Dimitri M. Kullmann; Matthew C. Walker
Feed-forward inhibition mediated by ionotropic GABAA receptors contributes to the temporal precision of neuronal signal integration. These receptors exert their inhibitory effect by shunting excitatory currents and by hyperpolarizing neurons. The relative roles of these mechanisms in neuronal computations are, however, incompletely understood. In this study, we show that by depolarizing the resting membrane potential relative to the reversal potential for GABAA receptors, the hyperpolarization-activated mixed cation current (Ih) maintains a voltage gradient for fast synaptic inhibition in hippocampal pyramidal cells. Pharmacological or genetic ablation of Ih broadens the depolarizing phase of afferent synaptic waveforms by hyperpolarizing the resting membrane potential. This increases the integration time window for action potential generation. These results indicate that the hyperpolarizing component of GABAA receptor-mediated inhibition has an important role in maintaining the temporal fidelity of coincidence detection and suggest a previously unrecognized mechanism by which Ih modulates information processing in the hippocampus.
Neuron | 2013
Sergiy Sylantyev; Leonid P. Savtchenko; Yaroslav S. Ermolyuk; Piotr Michaluk; Dmitri A. Rusakov
Summary Electric fields of synaptic currents can influence diffusion of charged neurotransmitters, such as glutamate, in the synaptic cleft. However, this phenomenon has hitherto been detected only through sustained depolarization of large principal neurons, and its adaptive significance remains unknown. Here, we find that in cerebellar synapses formed on electrically compact granule cells, a single postsynaptic action potential can retard escape of glutamate released into the cleft. This retardation boosts activation of perisynaptic group I metabotropic glutamate receptors (mGluRs), which in turn rapidly facilitates local NMDA receptor currents. The underlying mechanism relies on a Homer-containing protein scaffold, but not GPCR- or Ca2+-dependent signaling. Through the mGluR-NMDAR interaction, the coincidence between a postsynaptic spike and glutamate release triggers a lasting enhancement of synaptic transmission that alters the basic integrate-and-spike rule in the circuitry. Our results thus reveal an electrodiffusion-driven synaptic memory mechanism that requires high-precision coincidence detection suitable for high-fidelity circuitries.
Nature Neuroscience | 2013
Leonid P. Savtchenko; Sergiy Sylantyev; Dmitri A. Rusakov
Why synapses release a certain amount of neurotransmitter is poorly understood. We combined patch-clamp electrophysiology with computer simulations to estimate how much glutamate is discharged at two distinct central synapses of the rat. We found that, regardless of some uncertainty over synaptic microenvironment, synapses generate the maximal current per released glutamate molecule while maximizing signal information content. Our result suggests that synapses operate on a principle of resource optimization.
NeuroImage | 2005
Leonid P. Savtchenko; Dmitri A. Rusakov
Diffusion-weighted magnetic resonance imaging detects physiological changes in the human brain by highlighting alterations in local diffusivity. However, the causal link between brain tissue diffusivity and neural activity is poorly understood. Synaptic physiology studies in vitro coupled with biophysical modeling have suggested that extracellular diffusion affects the spatial profile of receptor activation during synaptic discharges. Here, we attempt to address this issue more directly, by recording synaptic currents from individual cells in acute brain slices while reducing the bath medium diffusivity by 25-30% (measured with two-photon microscopy) using inert dextran molecules. We find that retarding extracellular diffusion increases the activation of high-affinity NMDA, but not low-affinity AMPA, receptors in response to remote, spontaneous or evoked, synaptic releases of the common excitatory neurotransmitter glutamate. The results suggest that variations in extracellular diffusivity could reflect an altered contribution of higher- versus lower-affinity receptor types to the network activity of synaptic circuits.