Leonid S. Brown
University of Guelph
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Leonid S. Brown.
Chemical Reviews | 2014
Oliver P. Ernst; David T. Lodowski; Marcus Elstner; Peter Hegemann; Leonid S. Brown; Hideki Kandori
Organisms of all domains of life use photoreceptor proteins to sense and respond to light. The light-sensitivity of photoreceptor proteins arises from bound chromophores such as retinal in retinylidene proteins, bilin in biliproteins, and flavin in flavoproteins. Rhodopsins found in Eukaryotes, Bacteria, and Archaea consist of opsin apoproteins and a covalently linked retinal which is employed to absorb photons for energy conversion or the initiation of intra- or intercellular signaling.1 Both functions are important for organisms to survive and to adapt to the environment. While lower organisms utilize the family of microbial rhodopsins for both purposes, animals solely use a different family of rhodopsins, a specialized subset of G-protein-coupled receptors (GPCRs).1,2 Animal rhodopsins, for example, are employed in visual and nonvisual phototransduction, in the maintenance of the circadian clock and as photoisomerases.3,4 While sharing practically no sequence similarity, microbial and animal rhodopsins, also termed type-I and type-II rhodopsins, respectively, share a common architecture of seven transmembrane α-helices (TM) with the N- and C-terminus facing out- and inside of the cell, respectively (Figure (Figure11).1,5 Retinal is attached by a Schiff base linkage to the e-amino group of a lysine side chain in the middle of TM7 (Figures (Figures11 and and2).2). The retinal Schiff base (RSB) is protonated (RSBH+) in most cases, and changes in protonation state are integral to the signaling or transport activity of rhodopsins. Figure 1 Topology of the retinal proteins. (A) These membrane proteins contain seven α-helices (typically denoted helix A to G in microbial opsins and TM1 to 7 in the animal opsins) spanning the lipid bilayer. The N-terminus faces the outside of the cell ...
Science | 2006
Valentyn I. Prokhorenko; Andrea M. Nagy; Stephen A. Waschuk; Leonid S. Brown; Robert R. Birge; R. J. Dwayne Miller
Optical control of the primary step of photoisomerization of the retinal molecule in bacteriorhodopsin from the all-trans to the 13-cis state was demonstrated under weak field conditions (where only 1 of 300 retinal molecules absorbs a photon during the excitation cycle) that are relevant to understanding biological processes. By modulating the phases and amplitudes of the spectral components in the photoexcitation pulse, we showed that the absolute quantity of 13-cis retinal formed upon excitation can be enhanced or suppressed by ±20% of the yield observed using a short transform-limited pulse having the same actinic energy. The shaped pulses were shown to be phase-sensitive at intensities too low to access different higher electronic states, and so these pulses apparently steer the isomerization through constructive and destructive interference effects, a mechanism supported by observed signatures of vibrational coherence. These results show that the wave properties of matter can be observed and even manipulated in a system as large and complex as a protein.
Journal of Biological Chemistry | 1995
Leonid S. Brown; Jun Sasaki; Hideki Kandori; Akio Maeda; Richard Needleman; Janos K. Lanyi
We have measured proton release into the medium after proton transfer from the retinal Schiff base to Asp85 in the photocycle and the C=O stretch bands of carboxylic acids in wild type bacteriorhodopsin and the E204Q and E204D mutants. In E204Q, but not in E204D, the normal proton release is absent. Consistent with this, a negative band in the Fourier transform infrared difference spectra at 1700 cm−1 in the wild type, which we now attribute to depletion of the protonated E204, is also absent in E204Q. In E204D, this band is shifted to 1714 cm−1, as expected from the higher frequency for a protonated aspartic than for a glutamic acid. Consistent with their origin from protonated carboxyls, the depletion bands in the wild type and E204D shift in D2O to 1690 and 1703 cm−1, respectively. In the protein structure, Glu204 seems to be connected to the Schiff base region by a chain of hydrogen-bonded water. As with other residues closer to the Schiff base, replacement of Glu204 with glutamine changes the O-H stretch frequency of the bound water molecule near Asp85 that undergoes hydrogen-bonding change in the photocycle. The results therefore identify Glu204 as XH, the earlier postulated residue that is the source of the released proton during the transport, and suggest that its deprotonation is triggered by the protonation of Asp85 through a network that contains water dipoles.
Nature Methods | 2013
Shenlin Wang; Rachel Munro; Lichi Shi; Izuru Kawamura; Takashi Okitsu; Akimori Wada; So Young Kim; Kwang Hwan Jung; Leonid S. Brown; Vladimir Ladizhansky
Determination of structure of integral membrane proteins, especially in their native environment, is a formidable challenge in structural biology. Here we demonstrate that magic angle spinning solid-state NMR spectroscopy can be used to determine structures of membrane proteins reconstituted in synthetic lipids, an environment similar to the natural membrane. We combined a large number of experimentally determined interatomic distances and local torsional restraints to solve the structure of an oligomeric membrane protein of common seven-helical fold, Anabaena sensory rhodopsin (ASR). We determined the atomic resolution detail of the oligomerization interface of the ASR trimer, and the arrangement of helices, side chains and the retinal cofactor in the monomer.
Journal of the American Chemical Society | 2011
Meaghan E. Ward; Lichi Shi; Evelyn Lake; Sridevi Krishnamurthy; Howard Hutchins; Leonid S. Brown; Vladimir Ladizhansky
We used high-resolution proton-detected multidimensional NMR to study the solvent-exposed parts of a seven-helical integral membrane proton pump, proteorhodopsin (PR). PR samples were prepared by growing the apoprotein on fully deuterated medium and reintroducing protons to solvent-accessible sites through exchange with protonated buffer. This preparation leads to NMR spectra with proton resolution down to ca. 0.2 ppm at fast spinning (28 kHz) in a protein back-exchanged at a level of 40%. Novel three-dimensional proton-detected chemical shift correlation spectroscopy allowed for the identification and resonance assignment of the solvent-exposed parts of the protein. Most of the observed residues are located at the membrane interface, but there are notable exceptions, particularly in helix G, where most of the residues are susceptible to H/D exchange. This helix contains Schiff base-forming Lys231, and many conserved polar residues in the extracellular half, such as Asn220, Tyr223, Asn224, Asp227, and Asn230. We proposed earlier that high mobility of the F-G loop may transiently expose a hydrophilic cavity in the extracellular half of the protein, similar to the one found in xanthorhodopsin. Solvent accessibility of helix G is in line with this hypothesis, implying that such a cavity may be a part of the proton-conducting pathway lined by this helix.
Biophysical Journal | 1993
Leonid S. Brown; L. Bonet; R. Needleman; Janos K. Lanyi
The pK(a) values of D85 in the wild-type and R82Q, as well as R82A recombinant bacteriorhodopsins, and the Schiff base in the D85N, D85T, and D85N/R82Q proteins, have been determined by spectroscopic titrations in the dark. They are used to estimate the coulombic interaction energies and the pK(a) values of the Schiff base, D85, and R82 during proton transfer from the Schiff base to D85, and the subsequent proton release to the bulk in the initial part of the photocycle. The pK(a) of the Schiff base before photoexcitation is calculated to be in effect only 5.3-5.7 pH units higher than that of D85; overcoming this to allow proton transfer to D85 requires about two thirds of the estimated excess free energy retained after absorption of a photon. The proton release on the extracellular surface is from an unidentified residue whose pK(a) is lowered to about 6 after deprotonation of the Schiff base (Zimanyi, L., G. Varo, M. Chang, B. Ni, R. Needleman, and J.K. Lanyi, 1992. Biochemistry. 31:8535-8543). We calculate that the pK(a) of the R82 is 13.8 before photoexcitation, and it is lowered after proton exchange between the Schiff base and D85 only by 1.5-2.3 pH units. Therefore, coulombic interactions alone do not appear to change the pK(a) of R82 as much and D85 only by 1.5-2.3 pH units. Therefore, coulombic interactions alone do not appear to change the pK(a) of R82 as much as required if it were the proton release group.
Biochimica et Biophysica Acta | 2009
Lichi Shi; Evelyn Lake; Mumdooh A.M. Ahmed; Leonid S. Brown; Vladimir Ladizhansky
Proteorhodopsins are typical retinal-binding light-driven proton pumps of heptahelical architecture widely distributed in marine and freshwater bacteria. Recently, we have shown that green proteorhodopsin (GPR) can be prepared in a lipid-bound state that gives well-resolved magic angle spinning (MAS) NMR spectra in samples with different patterns of reverse labelling. Here, we present 3D and 4D sequential chemical shift assignments identified through experiments conducted on a uniformly (13)C,(15)N-labelled sample. These experiments provided the assignments for 153 residues, with a particularly high density in the transmembrane regions ( approximately 74% of residues). The extent of assignments permitted a detailed examination of the secondary structure and dynamics in GPR. In particular, we present experimental evidence of mobility of the proteins termini and of the A-B, C-D, and F-G loops, the latter being possibly coupled to the GPR ion-transporting function.
Biophysical Journal | 2009
Mylene R.M. Miranda; Ah Rheum Choi; Lichi Shi; Arandi G. Bezerra; Kwang-Hwan Jung; Leonid S. Brown
The genome of thylakoidless cyanobacterium Gloeobacter violaceus encodes a fast-cycling rhodopsin capable of light-driven proton transport. We characterize the dark state, the photocycle, and the proton translocation pathway of GR spectroscopically. The dark state of GR contains predominantly all-trans-retinal and, similar to proteorhodopsin, does not show the light/dark adaptation. We found an unusually strong coupling between the conformation of the retinal and the site of Glu132, the homolog of Asp96 of BR. Although the photocycle of GR is similar to that of proteorhodopsin in general, it differs in accumulating two intermediates typical for BR, the L-like and the N-like states. The latter state has a deprotonated cytoplasmic proton donor and is spectrally distinct from the strongly red-shifted N intermediate known for proteorhodopsin. The proton uptake precedes the release and occurs during the transition to the O intermediate. The proton translocation pathway of GR is similar to those of other proton-pumping rhodopsins, involving homologs of BR Schiff base proton acceptor and donor Asp85 and Asp96 (Asp121 and Glu132). We assigned a pair of FTIR bands (positive at 1749 cm(-1) and negative at 1734 cm(-1)) to the protonation and deprotonation, respectively, of these carboxylic acids.
Journal of the American Chemical Society | 2012
Shenlin Wang; Rachel Munro; So Young Kim; Kwang-Hwan Jung; Leonid S. Brown; Vladimir Ladizhansky
Protein-protein interactions play critical roles in cellular function and oligomerization of membrane proteins is a commonly observed phenomenon. Determining the oligomerization state and defining the intermolecular interface in the bilayer is generally a difficult task. Here, we use site-specific spin labeling to demonstrate that relaxation enhancements induced by covalently attached paramagnetic tag can provide distance restraints defining the intermonomer interface in oligomers formed by a seven-helical transmembrane protein Anabaena Sensory Rhodopsin (ASR). We combine these measurements with visible CD spectroscopy and cross-linking experiments to demonstrate that ASR forms tight trimers in both detergents and lipids.
Photochemical and Photobiological Sciences | 2004
Leonid S. Brown
In the last decade, several genome sequencing projects revealed the existence of previously unknown photoreceptors. Among those are eukaryotic rhodopsins of haloarchaeal type, mostly represented by fungal sequences. We have classified and analyzed seventy-seven of these fungal proteins, which show a high similarity of their putative transmembrane regions to those of bacteriorhodopsin. Those sequences can be divided into the two subgroups, fungal rhodopsins (RDs) and opsin-related proteins (ORPs), the latter lacking the lysine residue necessary for retinal binding. We have analyzed the conservation pattern of the residues known to have functional or structural importance in bacteriorhodopsin and discussed dramatic differences in the conservation between RDs and ORPs. We found many cases of multiple forms of RDs and/or ORPs and examined possible reasons for such multiplicity. For some species the reason may lie in functional photobiological diversification, while for the others it follows the pattern of evolutionary recent genome duplication and possible functional redundancy.