Leonid V. Danyushevsky
University of Tasmania
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Leonid V. Danyushevsky.
Science | 2007
Alexander V. Sobolev; Albrecht W. Hofmann; Dmitry V. Kuzmin; Gregory M. Yaxley; Nicholas Arndt; Sun-Lin Chung; Leonid V. Danyushevsky; Tim Elliott; Frederick A. Frey; Michael O. Garcia; Andrey A. Gurenko; Vadim S. Kamenetsky; Andrew Craig Kerr; Nadezhda A. Krivolutskaya; Vladimir V. Matvienkov; Igor K. Nikogosian; Alexander Rocholl; Ingvar A. Sigurdsson; N. M. Sushchevskaya; M. Teklay
One proposed strategy for controlling the transmission of insect-borne pathogens uses a drive mechanism to ensure the rapid spread of transgenes conferring disease refractoriness throughout wild populations. Here, we report the creation of maternal-effect selfish genetic elements in Drosophila that drive population replacement and are resistant to recombination-mediated dissociation of drive and disease refractoriness functions. These selfish elements use microRNA-mediated silencing of a maternally expressed gene essential for embryogenesis, which is coupled with early zygotic expression of a rescuing transgene.The phosphoinositide phosphatase PTEN is mutated in many human cancers. Although the role of PTEN has been studied extensively, the relative contributions of its numerous potential downstream effectors to deregulated growth and tumorigenesis remain uncertain. We provide genetic evidence in Drosophila melanogaster for the paramount importance of the protein kinase Akt [also called protein kinase B (PKB)] in mediating the effects of increased phosphatidylinositol 3,4,5-trisphosphate (PIP3) concentrations that are caused by the loss of PTEN function. A mutation in the pleckstrin homology (PH) domain of Akt that reduces its affinity for PIP3 sufficed to rescue the lethality of flies devoid of PTEN activity. Thus, Akt appears to be the only critical target activated by increased PIP3 concentrations in Drosophila.Using genomic and mass spectrometry-based proteomic methods, we evaluated gene expression, identified key activities, and examined partitioning of metabolic functions in a natural acid mine drainage (AMD) microbial biofilm community. We detected 2033 proteins from the five most abundant species in the biofilm, including 48% of the predicted proteins from the dominant biofilm organism, Leptospirillum group II. Proteins involved in protein refolding and response to oxidative stress appeared to be highly expressed, which suggests that damage to biomolecules is a key challenge for survival. We validated and estimated the relative abundance and cellular localization of 357 unique and 215 conserved novel proteins and determined that one abundant novel protein is a cytochrome central to iron oxidation and AMD formation.
Geochemistry Geophysics Geosystems | 2006
Klaus Peter Jochum; Brigitte Stoll; Kirstin Herwig; Matthias Willbold; Albrecht W. Hofmann; Marghaleray Amini; Susanne Aarburg; Wafa Abouchami; Eric Hellebrand; Beate Mocek; Ingrid Raczek; Andreas Stracke; Olivier Alard; Claudia Bouman; Stefan Becker; Marc Dücking; Helene Brätz; Reiner Klemd; Deon de Bruin; Dante Canil; Dave Hugh Cornell; Cees‐Jan de Hoog; Claude Dalpe; Leonid V. Danyushevsky; Anton Eisenhauer; Yongjun Gao; J. E. Snow; Nora Groschopf; Detlef Günther; Christopher Latkoczy
We present new analytical data of major and trace elements for the geological MPI-DING glasses KL2-G, ML3B-G, StHs6/80-G, GOR128-G, GOR132-G, BM90/21-G, T1-G, and ATHO-G. Different analytical methods were used to obtain a large spectrum of major and trace element data, in particular, EPMA, SIMS, LA-ICPMS, and isotope dilution by TIMS and ICPMS. Altogether, more than 60 qualified geochemical laboratories worldwide contributed to the analyses, allowing us to present new reference and information values and their uncertainties (at 95% confidence level) for up to 74 elements. We complied with the recommendations for the certification of geological reference materials by the International Association of Geoanalysts (IAG). The reference values were derived from the results of 16 independent techniques, including definitive (isotope dilution) and comparative bulk (e.g., INAA, ICPMS, SSMS) and microanalytical (e.g., LA-ICPMS, SIMS, EPMA) methods. Agreement between two or more independent methods and the use of definitive methods provided traceability to the fullest extent possible. We also present new and recently published data for the isotopic compositions of H, B, Li, O, Ca, Sr, Nd, Hf, and Pb. The results were mainly obtained by high-precision bulk techniques, such as TIMS and MC-ICPMS. In addition, LA-ICPMS and SIMS isotope data of B, Li, and Pb are presented.
Contributions to Mineralogy and Petrology | 2000
Leonid V. Danyushevsky; Fn Della-Pasqua; S. Sokolov
Abstract We describe and model a potential re-equilibration process that can affect compositions of melt inclusions in magnesian olivine phenocrysts. This process, referred to as “Fe-loss”, can operate during natural pre-eruptive cooling of host magma and results in lower FeOt and higher MgO contents within the initially trapped volume of inclusion. The extent of Fe-loss is enhanced by large temperature intervals of magma cooling before eruption. The compositions of homogenised melt inclusions in olivine phenocrysts from several subduction-related suites demonstrate that (1) Fe-loss is a common process, (2) the maximum observed degree of re-equilibration varies between suites, and (3) within a single sample, variable degrees of re-equilibration can be recorded by melt inclusions trapped in olivine phenocrysts of identical composition. Our modelling also demonstrates that the re-equilibration process is fast going to completion, in the largest inclusions in the most magnesian phenocrysts it is completed within 2 years. The results we obtained indicate that the possibility of Fe-loss must be considered when estimating compositions of parental subduction-related magmas from naturally quenched glassy melt inclusions in magnesian olivine phenocrysts. Compositions calculated from glassy inclusions affected by Fe-loss will inherit not only erroneously low FeOt contents, but also low MgO due to the inherited higher Mg##of the residual melt in re-equilibrated inclusions. We also demonstrate that due to the higher MgO contents of homogenised melt inclusions affected by Fe-loss, homogenisation temperatures achieved in heating experiments will be higher than original trapping temperatures. The extent of overheating will increase depending on the degree of re-equilibration, and can reach up to 50 °C in cases where complete re-equilibration occurs over a cooling interval of 200 °C.
Chemical Geology | 2002
Leonid V. Danyushevsky; Andrew W. McNeill; Alexander V. Sobolev
Melt inclusions in phenocrysts are a potentially powerful tool in petrological research that can provide the only direct information available on the physical parameters (P, T and melt composition) of crystallisation at various stages in the evolution of magmatic systems. However, melt inclusions also differ in principle from other parts of the magmatic system in that their composition, after trapping, may be controlled by the composition of the host phenocryst and therefore the direct application of our understanding of macro-scale magmatic processes to the interpretation of melt inclusion data can lead to erroneous conclusions. Our results indicate that the compositions of melt inclusions in early formed phenocrysts (olivine, pyroxene, plagioclase and spinel), often of most interest in petrological studies, can be affected by processes such as volatile dissociation, oxidation and/or partial re-equilibration with their host, both during natural cooling and homogenisation experiments. In particular, melt inclusions in all minerals are prone to hydrogen diffusion into or out of the inclusions after trapping and prior to eruption, and during homogenisation experiments. If not taken into account, this can significantly affect the crystallisation temperatures derived from the homogenisation experiments. Melt inclusions in highmagnesian olivine phenocrysts commonly have lower Fe contents compared to the initially trapped composition due to reequilibration with the host at lower temperatures. This often leads to the appearance of sulphide globules and in some cases high-magnesian clinopyroxene daughter crystals, and may cause an increase in the oxidation state of the inclusions. Homogenised melt inclusions in plagioclase phenocrysts in MORB usually have lower Ti and Fe, and higher Si contents compared to the melt composition at the moment of trapping. However, homogenisation experiments can provide reliable estimates of trapping temperature and the MgO, Al2O3, CaO, Na2O, and K2O contents of the host magma at the moment of trapping. Some of these processes can be identified by observing the behaviour of melt inclusions during homogenisation experiments using low-inertia visually controlled heating stages, and their effects can be minimised by using appropriate experimental conditions as determined by kinetic experiments, ideally completed for each phenocryst type in every sample. We also discuss general aspects of melt inclusion studies aimed at recovering H2O content of primary mantle-derived magmas and demonstrate that, in cases of low-pressure crystallisation, it is important to identify the
Journal of Volcanology and Geothermal Research | 2001
Leonid V. Danyushevsky
The main effects of H2O on crystallisation of basaltic liquids are to decrease melt liquidus temperature and to suppress plagioclase crystallisation relative to olivine and clinopyroxene. Although MORB magmas contain small amounts of H2O, for petrological purposes these magmas have been considered to be anhydrous. In this paper, the effect of small amounts of H2O on fractionation paths of MORB and BABB magmas is investigated by comparing the compositions of MORB and BABB glasses with the results of anhydrous experiments on MORB-like compositions. This effect is shown to be large enough that it should be considered when using glass compositions for the purposes of understanding MORB petrogenesis. The effect of H2O is strongly non-linear. The decrease of melt liquidus temperature can be obtained from the effect of H2O on the olivine crystallisation: Olivine Liquidus Depression (oC)=74.403x(H2Owt%)0.352. The suppression of plagioclase crystallisation relative to olivine is: Plagioclase Liquidus Depression Relative to Olivine (oC)=47.346x(H2Owt%)0.685. The presence of H2O produces the most pronounced effect on concentrations of Al2O3, FeO* and TiO2 in cogenetic suites of MORB and BABB. It also results in a smaller degree of fractionation for a given cooling interval. The computer program petrolog that performs modelling of magma fractionation at variable H2O contents is available from the author.
Geochemistry Geophysics Geosystems | 2011
Leonid V. Danyushevsky; Pavel Plechov
This paper introduces Petrolog3, software for modeling (1) fractional and equilibrium crystallization, (2) reverse fractional crystallization at variable pressure, melt oxidation state and melt H2O contents, and (3) postentrapment reequilibration of melt inclusions in olivine. Petrolog3 offers an algorithm that allows calculations with a potentially unlimited number of (1) mineral-melt equilibrium models for major and trace elements and (2) models describing melt physical parameters such as density and viscosity, melt oxidation state, and solubility of fluid components in silicate melts. The current version of the software incorporates 46 mineral-melt equilibrium models for 8 minerals; 3 models describing distribution of trace elements between minerals and melt; 4 models of melt oxidation state; 1 model for H2O solubility in silicate melts; and 4 models describing melt density and viscosity. The idea behind the program is to provide the community of igneous petrologists and geochemists with a user-friendly interface for using any combinations of available mineral-melt equilibrium models for computer simulation of the crystallization process.
Geology | 2004
Maya B. Kamenetsky; Alexander V. Sobolev; Vadim S. Kamenetsky; Roland Maas; Leonid V. Danyushevsky; Rainer Thomas; Nikolai P. Pokhilenko; Nikolai V. Sobolev
Kimberlite magmas, as the deepest probe into Earths mantle (>150 km), can supply unique information about volatile components (hydrogen, carbon, chlorine, sulfur) in mantle-derived melts and fluids. All known kimberlite rocks are not suitable for studies of mantle volatiles because of their pervasive postmagmatic alteration; however, this study discusses an exceptionally fresh group I kimberlites (<0.5 wt% H2O) from the Udachnaya-East diamondiferous pipe in Siberia. Kimberlite groundmass, in addition to euhedral olivine and calcite, is extremely enriched (at least 8 wt%) in water-soluble alkali chlorides, alkali carbonates, and sulfates (ratio 5:3:1), and often shows immiscibility textures. A primary magmatic origin of alkali chlorides and alkali carbonates is confirmed by the study of strontium isotopes in the water- and dilute acid-leachates of the groundmass (Sr-87/Sr-86 = 0.7069 and 0.7050) that contrast with much more radiogenic isotope composition of the Cambrian platform sedimentary rocks and the Udachnaya-East mine-site brines. Melt inclusions in groundmass olivine, composed of halite, sylvite, alkali-Ca carbonates, phlogopite, olivine, and CO2 fluid, were used to determine the composition and evolution of the kimberlite melt prior to emplacement. Melt inclusions show immiscibility between chloride and carbonate liquids at <600oC in heating stage experiments. The chloride and carbonate enrichment in the kimberlite parental magma suggests the presence of a powerful agent for chemical modifications (metasomatism) in the mantle and crust.
Nature | 2008
Andrew J. Berry; Leonid V. Danyushevsky; Hugh St. C. O'Neill; Matthew Newville; Stephen R. Sutton
Komatiites are volcanic rocks mainly of Archaean age that formed by unusually high degrees of melting of mantle peridotite. Their origin is controversial and has been attributed to either anhydrous melting of anomalously hot mantle or hydrous melting at temperatures only modestly greater than those found today. Here we determine the original Fe3+/ΣFe ratio of 2.7-Gyr-old komatiitic magma from Belingwe, Zimbabwe, preserved as melt inclusions in olivine, to be 0.10 ± 0.02, using iron K-edge X-ray absorption near-edge structure spectroscopy. This value is consistent with near-anhydrous melting of a source with a similar oxidation state to the source of present-day mid-ocean-ridge basalt. Furthermore, this low Fe3+/ΣFe value, together with a water content of only 0.2–0.3 wt% (ref. 7), excludes the possibility that the trapped melt contained significantly more water that was subsequently lost from the inclusions by reduction to H2 and diffusion. Loss of only 1.5 wt% water by this mechanism would have resulted in complete oxidation of iron (that is, the Fe3+/ΣFe ratio would be ∼1). There is also no petrographic evidence for the loss of molecular water. Our results support the identification of the Belingwe komatiite as a product of high mantle temperatures (∼1,700 °C), rather than melting under hydrous conditions (3–5-wt% water), confirming the existence of anomalously hot mantle in the Archaean era.
Earth and Planetary Science Letters | 1993
Leonid V. Danyushevsky; T.J. Falloon; Alexander V. Sobolev; Anthony J. Crawford; Michael R. Carroll; R.C. Price
The H2O content of 35 glasses from Southwest Pacific back-arc basins (Lau, North Fiji, Woodlark and Manus) have been determined by infrared spectroscopy. On a plot of K2O vs. H2O the glass data define two distinct trends characterized by different slopes. Trend I, with a slope (K2O/H2O) of 0.25, can be explained by addition of a subduction-related component with K2O/H2O = 0.25 to a depleted mid-ocean ridge basalt mantle source (N- or D-MORB-like). Trend II, which coincides with the N- to E-MORB compositional spectrum, can be produced by addition of a non-subduction component, possibly an alkaline magma with K2O/H2O∼ 1.5, to the same depleted mantle source. The K2O/TiO2 and K/Nb values of E-MORB and back-arc basin basalts (BABB) of Trend II suggest that the enriched component involved in their genesis is not derived from a typical ocean island basalt (OIB, e.g. Hawaiian) mantle source. Our data show that the entire spectrum of BABB compositions can be explained by different degrees of mixing of a mantle source of either D-, N- or E-MORB composition with the subduction-related component, characterized by a K2O/H2O value of 0.25. Different BABB types correlate with tectonic setting. Samples from the Trend II are associated with relatively stable spreading ridges, whereas those affected by the subduction-related component are always associated with more complex tectonic settings, or come from young or incipient back-arc basins. Pronounced E-MORB affinities of mantle sources are demonstrated only for samples from the Lau, North Fiji and Scotia Sea basins. The most H2O enriched BABB of Trend I partly overlap in terms of H2O and K2O content and H2O/TiO2 and K2O/TiO2 values with island arc tholeiites. This suggests involvement of similar subduction-related components in the genesis of these two magma types. Because a larger database is now available, the K2O/H2O vs. TiO2 tectonic discriminan diagram of Muenow et al. [2] appears to be less useful than when originally proposed. The very low K2O/H2O value ( O value (0.25) is also of some interest, as the same value occurs in depleted MORB.
Geochemistry-exploration Environment Analysis | 2011
Leonid V. Danyushevsky; Phillip Robinson; Se Gilbert; Marc D. Norman; Rr Large; Pj McGoldrick; Michael Shelley
ABSTRACT The paper describes a calibration standard for quantitative in-situ multi-element analysis of sulphide minerals by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Standard STDGL2b2 is a mixture of 25% Zn concentrate and 75% pyrrhotite doped with a number of additional trace elements and fused into an X-ray fluorescence (XRF) glass disk. The homogeneity of the disk has been tested for the 55 elements of interest. All elements except Se, Tl, Au and Pt are homogenous (< 5% variation). Accurate analysis for the above four elements requires averaging multiple analyses of the standard. Element concentrations in STDGL2b2 were quantified by XRF and standard solution ICP-MS using a Finnigan Element and an Agilent 4500 mass-spectrometers. For the analysis of pyrite, pyrrhotite, chalcopyrite, galena and sphalerite, analytical errors caused by matrix-dependent fractionation have been evaluated by analysing five pressed-powder pellets.. The compositions of the powders have been analysed by XRF and solution ICP-MS. When Fe or Pb can be used as the internal standard, errors for most elements are < 15%, but reach up to 50% for W, Zn and Cd, requiring correction factors to be introduced. However, when Zn is used as the internal standard, significant correction factors are required for most elements. Comparison of the results obtained with two different laser microprobes, a solid state 213 nm and an excimer 193 nm, indicates that either is well suited for LA-ICP-MS analysis of sulphide minerals using STDGL2b2 as the calibration standard. Use of STDGL2b2 significantly improves accuracy of sulphide analysis by LA-ICP-MS compared to silicate reference materials, such as the NIST 600 series.