Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leonid Yurganov is active.

Publication


Featured researches published by Leonid Yurganov.


Journal of Geophysical Research | 2007

Impacts of enhanced biomass burning in the boreal forests in 1998 on tropospheric chemistry and the sensitivity of model results to the injection height of emissions

F. T. Leung; Jennifer A. Logan; Rokjin J. Park; Edward J. Hyer; Eric S. Kasischke; David G. Streets; Leonid Yurganov

derived inventories for the fire emissions that differ by a factor of two. We find that it is essential to use both surface and column observations of CO to constrain the magnitude of the fire emissions and their injection altitude. Our results show that the larger of the two inventories appears more reliable and that about half of the emissions were injected above the boundary layer. The boreal fire emissions cause a much larger enhancement in ozone when about half the emissions are released above the boundary layer than when they are releasedexclusivelyintheboundarylayer,asaconsequenceoftheroleofPANasasourceof NOx as air descends in regions far from the fires. Citation: Leung, F.-Y. T., J. A. Logan, R. Park, E. Hyer, E. Kasischke, D. Streets, and L. Yurganov (2007), Impacts of enhanced biomass burning in the boreal forests in 1998 on tropospheric chemistry and the sensitivity of model results to the injection height of emissions, J. Geophys. Res., 112, D10313, doi:10.1029/2006JD008132.


Journal of Geophysical Research | 2008

Global AIRS and MOPITT CO measurements: validation, comparison, and links to biomass burning variations and carbon cycle

Leonid Yurganov; W. Wallace McMillan; A. V. Dzhola; E. I. Grechko; Nicholas Jones; Guido R. van der Werf

[1]xa0New results of CO global total column measurements using the Atmospheric Infrared Sounder (AIRS) aboard the Aqua satellite in comparison with Measurements of Pollution in the Troposphere (MOPITT) sensor aboard the Terra satellite are presented. Both data sets are validated using ground-based total column measurements in Russia and Australia. A quality parameter based on the Profile Percent A Priori values from the standard MOPITT product is introduced. AIRS data (version 4) for biomass burning events are in agreement or lower than both MOPITT and ground measurements, but CO bursts can be seen by AIRS in most cases. For the cases of low CO amounts in the Southern Hemisphere AIRS has a positive bias of ∼30–40% compared to MOPITT and ground truth. MOPITT data were used to estimate interannual variations of CO sources assuming a standard seasonal cycle for the main CO remover OH. A positive trend of CO global emissions for the second half of the year between 2000 and 2006 was found with no visible trend for the first half of the year. CO annual emission in 2006 was 184 ± 40 Tg higher that that in 2000–2001. The monthly emission anomalies correlate well with an independently calculated Global Fire Emission Database (GFED2). Total carbon contribution from biomass burning in 1997, 1998 (both estimated by GFED2), and 2006 (according to MOPITT) were as high as (0.6–1) Pg C/year larger than in 2000, suggesting that fires can explain a substantial fraction of the interannual variability of CO2.


Izvestiya Atmospheric and Oceanic Physics | 2011

Investigation of the 2010 July–August fires impact on carbon monoxide atmospheric pollution in Moscow and its outskirts, estimating of emissions

E. V. Fokeeva; A. N. Safronov; V. S. Rakitin; Leonid Yurganov; E. I. Grechko; R. A. Shumskii

We investigate the air pollution in the central European part of Russia during the 2010 summer fires. The results of ground-based (Institute of Atmospheric Physics (IAP), Moscow State University (MSU), and Zvenigorod Scientific Station (ZSS)) and satellite (MOPITT, AIRS, of Terra and Aqua satellites) measurements of the total content and concentration of carbon monoxide (CO), as well as MODIS data on the spatial and temporal distribution of forest and peat fires obtained from Terra and Aqua satellites, are presented. A comparison between similar situations in 2010 and 2002 revealed the causes of higher pollution levels in 2010. The use of trajectory analysis, detailed space imagery, and model calculations made it possible to reveal the location of peat fires and their contribution to the air pollution over the Moscow megalopolis. Fireemission estimates were obtained using two independent methods.


Science | 2012

Iconic CO2 Time Series at Risk

Sander Houweling; Bakr Badawy; D. F. Baker; Sourish Basu; Dmitry Belikov; P. Bergamaschi; P. Bousquet; Grégoire Broquet; Tim Butler; Josep G. Canadell; Jing M. Chen; F. Chevallier; Philippe Ciais; G. James Collatz; Scott Denning; Richard J. Engelen; I. G. Enting; Marc L. Fischer; A. Fraser; Christoph Gerbig; Manuel Gloor; Andrew R. Jacobson; Dylan B. A. Jones; Martin Heimann; Aslam Khalil; Thomas Kaminski; Prasad S. Kasibhatla; Nir Y. Krakauer; M. Krol; Takashi Maki

The steady rise in atmospheric long-lived greenhouse gas concentrations is the main driver of contemporary climate change. The Mauna Loa CO2 time series (1, 2), started by C. D. Keeling in 1958 and maintained today by the Scripps Institution of Oceanography and the Earth System Research Laboratory (ESRL) of NOAA, is iconic evidence of the effect of human-caused fossil fuel and land-use change emissions on the atmospheric increase of CO2. The continuity of such records depends critically on having stable funding, which is challenging to maintain in the context of 3- to 4-year research grant funding cycles (3), and is currently threatened by the financial crisis. The ESRL Global Monitoring Division maintains a network of about 100 surface and aircraft sites worldwide at which whole air samples are collected approximately every week for analysis of CO2, CH4, CO, halocarbons, and many other chemical species (4). This is complemented by high-frequency measurements at the Mauna Loa, Barrow, American Samoa, and South Pole observatories, and about 10 North American tall towers. The success of the NOAA program has inspired similar efforts in Europe (5), China (6), India (7), and Brazil (8), with the United Nations World Meteorological Organization providing guidance and precision requirements through the Global Atmosphere Watch program (9), but no funding. The data collected by NOAA and its worldwide partners have been used not only to demonstrate the unassailable rise of atmospheric greenhouse gas concentrations, but also to infer the magnitudes, locations, and times of surface-atmosphere exchange of those gases based on small concentration gradients between sites (10). Important findings from analysis of these records include the detection of a significant terrestrial carbon sink at northern mid-latitudes (11) and subsequent research aimed at identifying the mechanisms by which that sink must operate. Long-term, high-quality, atmospheric measurements are crucial for quantifying trends in greenhouse gas fluxes and attributing them to fossil fuel emissions, changes in land-use and management, or the response of natural land and ocean ecosystems to climate change and elevated CO2 concentrations. Greenhouse gas measurements along tall towers in the interior continents allow quantification of regional sources and sinks, which has a very high relevance for measuring the effectiveness of climate policy. NOAA ESRL provides measurements that are critical for the U.S. national security in that they provide independent verification and early warning of changing greenhouse gas emissions from countries involved in efforts to mitigate greenhouse gases. Dedicated carbon-observing satellites such as GOSAT and OCO-2 are needed to fill in the missing geographical information required for verification of carbon flux mitigation efforts. However, satellite retrievals do not yet provide sufficient information to deliver new constraints on surface fluxes, although quick progress is being made in this direction. In situ observations are crucial for anchoring space-borne measurements, for detecting potential biases of remote sensing techniques, and for providing continuity given the finite lifetime of satellites. Despite the growing importance of greenhouse gas observations to humanity, substantial budget cuts at NOAA have resulted in curtailment of our ability to observe and understand changes to the global carbon cycle. Already, a dozen surface flask-sampling sites have been removed from NOAAs operational network and aircraft profiling sites have been eliminated and reduced in frequency at the remaining NOAA sites. The planned growth in the tall tower program has stopped, and plans for closing some towers are being developed. The U.S. budget process in this election year, with the added risk of mandatory across-the-board cuts due to the 2011 Budget Control Act, foretells more bleak news for greenhouse gas monitoring at NOAA and could cause further retreat from the goal of recording ongoing changes in atmospheric composition. As scientists, we believe that preserving the continuity of these vital time series must remain a priority for U.S. carbon cycle research.


Environmental Pollution | 2017

Remote sensing and in situ measurements of methane and ammonia emissions from a megacity dairy complex: Chino, CA☆

Ira Leifer; Christopher Melton; David M. Tratt; Kerry N. Buckland; Lieven Clarisse; Pierre Coheur; Jason Frash; Manish Gupta; Patrick D. Johnson; J. Brian Leen; Martin Van Damme; Simon Whitburn; Leonid Yurganov

Methane (CH4) and ammonia (NH3) directly and indirectly affect the atmospheric radiative balance with the latter leading to aerosol generation. Both have important spectral features in the Thermal InfraRed (TIR) that can be studied by remote sensing, with NH3 allowing discrimination of husbandry from other CH4 sources. Airborne hyperspectral imagery was collected for the Chino Dairy Complex in the Los Angeles Basin as well as in situ CH4, carbon dioxide (CO2) and NH3 data. TIR data showed good spatial agreement with in situ measurements and showed significant emissions heterogeneity between dairies. Airborne remote sensing mapped plume transport for ∼20xa0km downwind, documenting topographic effects on plume advection. Repeated multiple gas in situ measurements showed that emissions were persistent on half-year timescales. Inversion of one dairy plume found annual emissions of 4.1xa0×xa0105xa0kg CH4, 2.2xa0×xa0105xa0kg NH3, and 2.3xa0×xa0107xa0kg CO2, suggesting 2300, 4000, and 2100 head of cattle, respectively, and Chino Dairy Complex emissions of 42xa0Gg CH4 and 8.4xa0Gg NH3 implying ∼200k cows, ∼30% more than Peischl etxa0al. (2013) estimated for June 2010. Far-field data showed chemical conversion and/or deposition of Chino NH3 occurs within the confines of the Los Angeles Basin on a four to sixxa0h timescale, faster than most published rates, and likely from higher Los Angeles oxidant loads. Satellite observations from 2011 to 2014 confirmed that observed in situ transport patterns were representative and suggests much of the Chino Dairy Complex emissions are driven towards eastern Orange County, with a lesser amount transported to Palm Springs, CA. Given interest in mitigating husbandry health impacts from air pollution emissions, this study highlights how satellite observations can be leveraged to understand exposure and how multiple gas in situ emissions studies can inform on best practices given that emissions reduction of one gas could increase those of others.


Science | 2012

Letter tot the editor: Iconic CO2 Time Series at Risk

Sander Houweling; Bakr Badawy; D. F. Baker; Sourish Basu; Dmitry Belikov; P. Bergamaschi; P. Bousquet; Grégoire Broquet; T. Butler; Josep G. Canadell; Jing M. Chen; F. Chevallier; Philippe Ciais; G.J. Collatz; S. Denning; Richard J. Engelen; I. G. Enting; Marc L. Fischer; A. Fraser; Christoph Gerbig; Manuel Gloor; Andrew R. Jacobson; Dylan B. A. Jones; Martin Heimann; Aslam Khalil; Thomas Kaminski; Prasad S. Kasibhatla; Nir Y. Krakauer; M. Krol; Takashi Maki

The steady rise in atmospheric long-lived greenhouse gas concentrations is the main driver of contemporary climate change. The Mauna Loa CO2 time series (1, 2), started by C. D. Keeling in 1958 and maintained today by the Scripps Institution of Oceanography and the Earth System Research Laboratory (ESRL) of NOAA, is iconic evidence of the effect of human-caused fossil fuel and land-use change emissions on the atmospheric increase of CO2. The continuity of such records depends critically on having stable funding, which is challenging to maintain in the context of 3- to 4-year research grant funding cycles (3), and is currently threatened by the financial crisis. The ESRL Global Monitoring Division maintains a network of about 100 surface and aircraft sites worldwide at which whole air samples are collected approximately every week for analysis of CO2, CH4, CO, halocarbons, and many other chemical species (4). This is complemented by high-frequency measurements at the Mauna Loa, Barrow, American Samoa, and South Pole observatories, and about 10 North American tall towers. The success of the NOAA program has inspired similar efforts in Europe (5), China (6), India (7), and Brazil (8), with the United Nations World Meteorological Organization providing guidance and precision requirements through the Global Atmosphere Watch program (9), but no funding. The data collected by NOAA and its worldwide partners have been used not only to demonstrate the unassailable rise of atmospheric greenhouse gas concentrations, but also to infer the magnitudes, locations, and times of surface-atmosphere exchange of those gases based on small concentration gradients between sites (10). Important findings from analysis of these records include the detection of a significant terrestrial carbon sink at northern mid-latitudes (11) and subsequent research aimed at identifying the mechanisms by which that sink must operate. Long-term, high-quality, atmospheric measurements are crucial for quantifying trends in greenhouse gas fluxes and attributing them to fossil fuel emissions, changes in land-use and management, or the response of natural land and ocean ecosystems to climate change and elevated CO2 concentrations. Greenhouse gas measurements along tall towers in the interior continents allow quantification of regional sources and sinks, which has a very high relevance for measuring the effectiveness of climate policy. NOAA ESRL provides measurements that are critical for the U.S. national security in that they provide independent verification and early warning of changing greenhouse gas emissions from countries involved in efforts to mitigate greenhouse gases. Dedicated carbon-observing satellites such as GOSAT and OCO-2 are needed to fill in the missing geographical information required for verification of carbon flux mitigation efforts. However, satellite retrievals do not yet provide sufficient information to deliver new constraints on surface fluxes, although quick progress is being made in this direction. In situ observations are crucial for anchoring space-borne measurements, for detecting potential biases of remote sensing techniques, and for providing continuity given the finite lifetime of satellites. Despite the growing importance of greenhouse gas observations to humanity, substantial budget cuts at NOAA have resulted in curtailment of our ability to observe and understand changes to the global carbon cycle. Already, a dozen surface flask-sampling sites have been removed from NOAAs operational network and aircraft profiling sites have been eliminated and reduced in frequency at the remaining NOAA sites. The planned growth in the tall tower program has stopped, and plans for closing some towers are being developed. The U.S. budget process in this election year, with the added risk of mandatory across-the-board cuts due to the 2011 Budget Control Act, foretells more bleak news for greenhouse gas monitoring at NOAA and could cause further retreat from the goal of recording ongoing changes in atmospheric composition. As scientists, we believe that preserving the continuity of these vital time series must remain a priority for U.S. carbon cycle research.


Science | 2012

Iconic CO2 Time Series at Risk - eScholarship

Sander Houweling; Bakr Badawy; D. F. Baker; Sourish Basu; Dmitry Belikov; P. Bergamaschi; P. Bousquet; Grégoire Broquet; T. Butler; Josep G. Canadell; Jing M. Chen; F. Chevallier; Philippe Ciais; G.J. Collatz; S. Denning; Richard J. Engelen; I. G. Enting; Marc L. Fischer; A. Fraser; Christoph Gerbig; Manuel Gloor; Andrew R. Jacobson; Dylan B. A. Jones; Martin Heimann; Aslam Khalil; Thomas Kaminski; Prasad S. Kasibhatla; Nir Y. Krakauer; M. Krol; Takashi Maki

The steady rise in atmospheric long-lived greenhouse gas concentrations is the main driver of contemporary climate change. The Mauna Loa CO2 time series (1, 2), started by C. D. Keeling in 1958 and maintained today by the Scripps Institution of Oceanography and the Earth System Research Laboratory (ESRL) of NOAA, is iconic evidence of the effect of human-caused fossil fuel and land-use change emissions on the atmospheric increase of CO2. The continuity of such records depends critically on having stable funding, which is challenging to maintain in the context of 3- to 4-year research grant funding cycles (3), and is currently threatened by the financial crisis. The ESRL Global Monitoring Division maintains a network of about 100 surface and aircraft sites worldwide at which whole air samples are collected approximately every week for analysis of CO2, CH4, CO, halocarbons, and many other chemical species (4). This is complemented by high-frequency measurements at the Mauna Loa, Barrow, American Samoa, and South Pole observatories, and about 10 North American tall towers. The success of the NOAA program has inspired similar efforts in Europe (5), China (6), India (7), and Brazil (8), with the United Nations World Meteorological Organization providing guidance and precision requirements through the Global Atmosphere Watch program (9), but no funding. The data collected by NOAA and its worldwide partners have been used not only to demonstrate the unassailable rise of atmospheric greenhouse gas concentrations, but also to infer the magnitudes, locations, and times of surface-atmosphere exchange of those gases based on small concentration gradients between sites (10). Important findings from analysis of these records include the detection of a significant terrestrial carbon sink at northern mid-latitudes (11) and subsequent research aimed at identifying the mechanisms by which that sink must operate. Long-term, high-quality, atmospheric measurements are crucial for quantifying trends in greenhouse gas fluxes and attributing them to fossil fuel emissions, changes in land-use and management, or the response of natural land and ocean ecosystems to climate change and elevated CO2 concentrations. Greenhouse gas measurements along tall towers in the interior continents allow quantification of regional sources and sinks, which has a very high relevance for measuring the effectiveness of climate policy. NOAA ESRL provides measurements that are critical for the U.S. national security in that they provide independent verification and early warning of changing greenhouse gas emissions from countries involved in efforts to mitigate greenhouse gases. Dedicated carbon-observing satellites such as GOSAT and OCO-2 are needed to fill in the missing geographical information required for verification of carbon flux mitigation efforts. However, satellite retrievals do not yet provide sufficient information to deliver new constraints on surface fluxes, although quick progress is being made in this direction. In situ observations are crucial for anchoring space-borne measurements, for detecting potential biases of remote sensing techniques, and for providing continuity given the finite lifetime of satellites. Despite the growing importance of greenhouse gas observations to humanity, substantial budget cuts at NOAA have resulted in curtailment of our ability to observe and understand changes to the global carbon cycle. Already, a dozen surface flask-sampling sites have been removed from NOAAs operational network and aircraft profiling sites have been eliminated and reduced in frequency at the remaining NOAA sites. The planned growth in the tall tower program has stopped, and plans for closing some towers are being developed. The U.S. budget process in this election year, with the added risk of mandatory across-the-board cuts due to the 2011 Budget Control Act, foretells more bleak news for greenhouse gas monitoring at NOAA and could cause further retreat from the goal of recording ongoing changes in atmospheric composition. As scientists, we believe that preserving the continuity of these vital time series must remain a priority for U.S. carbon cycle research.


Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIV | 2008

Local, regional, and global views of tropospheric carbon monoxide from the Atmospheric Infrared Sounder (AIRS)

W. Wallace McMillan; Leonid Yurganov

More than five years of CO retrievals from the Atmospheric InfraRed Sounder (AIRS) onboard NASAs Aqua satellite reveal variations in tropospheric CO on timescales from twelve hours to five years and on spatial scales from local to global. The shorter timescales are invaluable to monitor daily variations in CO emissions, to enable three-dimensional tracking of atmospheric motions, and to enhance insights into atmospheric mixing. Previous studies have utilized AIRS CO retrievals over the course of days to weeks to track plumes from large forest fires. On the local scale, we will present AIRS observations of pollution from several northern hemisphere Megacities. On the regional scale, we will present AIRS observations of the Mexico City pollution plume. We will illustrate global scale AIRS CO observations of interannual variations linked to the influence of large-scale atmospheric perturbations from the El Nino Southern Oscillation (ENSO). In particular, we observe a quasi-biennial variation in CO emissions from Indonesia with varying magnitudes in peak emission occurring in 2002, 2004, and 2006. Examining satellite rainfall measurements over Indonesia, we find the enhanced CO emission correlates with occasions of less rainfall during the month of October. Continuing this satellite record of tropospheric CO with measurements from the European IASI instrument will permit construction of a long time-series useful for further investigations of climatological variations in CO emissions and their impact on the health of the atmosphere.


Atmospheric Chemistry and Physics | 2011

Satellite- and ground-based CO total column observations over 2010 Russian fires: accuracy of top-down estimates based on thermal IR satellite data

Leonid Yurganov; V. Rakitin; A. Dzhola; Thomas August; E. Fokeeva; Maya George; G. Gorchakov; E. Grechko; S. Hannon; A. Karpov; Lesley E. Ott; E. Semutnikova; R. Shumsky; L. Larrabee Strow


Atmospheric Chemistry and Physics | 2009

Analysis of global and regional CO burdens measured from space between 2000 and 2009 and validated by ground-based solar tracking spectrometers

Leonid Yurganov; William Wallace McMillan; E. I. Grechko; A. V. Dzhola

Collaboration


Dive into the Leonid Yurganov's collaboration.

Top Co-Authors

Avatar

E. I. Grechko

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Aslam Khalil

Portland State University

View shared research outputs
Top Co-Authors

Avatar

D. F. Baker

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Marc L. Fischer

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sourish Basu

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge