Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leonid Zamdborg is active.

Publication


Featured researches published by Leonid Zamdborg.


Nature | 2011

Mapping intact protein isoforms in discovery mode using top-down proteomics

John C. Tran; Leonid Zamdborg; Dorothy R. Ahlf; Ji Eun Lee; Adam D. Catherman; Kenneth R. Durbin; Jeremiah D. Tipton; Adaikkalam Vellaichamy; John F. Kellie; Mingxi Li; Cong Wu; Steve M. M. Sweet; Bryan P. Early; Nertila Siuti; Richard D. LeDuc; Philip D. Compton; Paul M. Thomas; Neil L. Kelleher

A full description of the human proteome relies on the challenging task of detecting mature and changing forms of protein molecules in the body. Large-scale proteome analysis has routinely involved digesting intact proteins followed by inferred protein identification using mass spectrometry. This ‘bottom-up’ process affords a high number of identifications (not always unique to a single gene). However, complications arise from incomplete or ambiguous characterization of alternative splice forms, diverse modifications (for example, acetylation and methylation) and endogenous protein cleavages, especially when combinations of these create complex patterns of intact protein isoforms and species. ‘Top-down’ interrogation of whole proteins can overcome these problems for individual proteins, but has not been achieved on a proteome scale owing to the lack of intact protein fractionation methods that are well integrated with tandem mass spectrometry. Here we show, using a new four-dimensional separation system, identification of 1,043 gene products from human cells that are dispersed into more than 3,000 protein species created by post-translational modification (PTM), RNA splicing and proteolysis. The overall system produced greater than 20-fold increases in both separation power and proteome coverage, enabling the identification of proteins up to 105 kDa and those with up to 11 transmembrane helices. Many previously undetected isoforms of endogenous human proteins were mapped, including changes in multiply modified species in response to accelerated cellular ageing (senescence) induced by DNA damage. Integrated with the latest version of the Swiss-Prot database, the data provide precise correlations to individual genes and proof-of-concept for large-scale interrogation of whole protein molecules. The technology promises to improve the link between proteomics data and complex phenotypes in basic biology and disease research.


Blood | 2011

The MMSET histone methyl transferase switches global histone methylation and alters gene expression in t(4;14) multiple myeloma cells

Eva Martinez-Garcia; Relja Popovic; Dong Joon Min; Steve M. M. Sweet; Paul M. Thomas; Leonid Zamdborg; Aaron Heffner; Christine Will; Laurence Lamy; Louis M. Staudt; David Levens; Neil L. Kelleher; Jonathan D. Licht

The multiple myeloma SET domain (MMSET) protein is overexpressed in multiple myeloma (MM) patients with the translocation t(4;14). Although studies have shown the involvement of MMSET/Wolf-Hirschhorn syndrome candidate 1 in development, its mode of action in the pathogenesis of MM is largely unknown. We found that MMSET is a major regulator of chromatin structure and transcription in t(4;14) MM cells. High levels of MMSET correlate with an increase in lysine 36 methylation of histone H3 and a decrease in lysine 27 methylation across the genome, leading to a more open structural state of the chromatin. Loss of MMSET expression alters adhesion properties, suppresses growth, and induces apoptosis in MM cells. Consequently, genes affected by high levels of MMSET are implicated in the p53 pathway, cell cycle regulation, and integrin signaling. Regulation of many of these genes required functional histone methyl-transferase activity of MMSET. These results implicate MMSET as a major epigenetic regulator in t(4;14)+ MM.


Nucleic Acids Research | 2007

ProSight PTM 2.0: improved protein identification and characterization for top down mass spectrometry

Leonid Zamdborg; Richard D. LeDuc; Kevin J. Glowacz; Yong Bin Kim; Vinayak Viswanathan; Ian T. Spaulding; Bryan P. Early; Eric J. Bluhm; Shannee Babai; Neil L. Kelleher

ProSight PTM 2.0 (http://prosightptm2.scs.uiuc.edu) is the next generation of the ProSight PTM web-based system for the identification and characterization of proteins using top down tandem mass spectrometry. It introduces an entirely new data-driven interface, integrated Sequence Gazer for protein characterization, support for fixed modifications, terminal modifications and improved support for multiple precursor ions (multiplexing). Furthermore, it supports data import and export for local analysis and collaboration.


Analytical Chemistry | 2011

On the Scalability and Requirements of Whole Protein Mass Spectrometry

Philip D. Compton; Leonid Zamdborg; Paul M. Thomas; Neil L. Kelleher

Top-down proteomics has improved over the past decade despite the significant challenges presented by the analysis of large protein ions. Here, the detection of these high mass species by electrospray-based mass spectrometry (MS) is examined from a theoretical perspective to understand the mass-dependent increases in the number of charge states, isotopic peaks, and interfering species present in typical protein mass spectra. Integrating these effects into a quantitative model captures the reduced ability to detect species over 25 kDa with the speed and sensitivity characteristic of proteomics based on <3 kDa peptide ions. The model quantifies the challenge that top-down proteomics faces with respect to current MS instrumentation and projects that depletion of (13)C and (15)N isotopes can improve detection at high mass by only <2-fold at 100 kDa whereas the effect is up to 5-fold at 10 kDa. Further, we find that supercharging electrosprayed proteins to the point of producing <5 charge states at high mass would improve detection by more than 20-fold.


Analytical Chemistry | 2010

Size-Sorting Combined with Improved Nanocapillary Liquid Chromatography-Mass Spectrometry for Identification of Intact Proteins up to 80 kDa

Adaikkalam Vellaichamy; John C. Tran; Adam D. Catherman; Ji Eun Lee; John F. Kellie; Steve M. M. Sweet; Leonid Zamdborg; Paul M. Thomas; Dorothy R. Ahlf; Kenneth R. Durbin; Gary A. Valaskovic; Neil L. Kelleher

Despite the availability of ultra-high-resolution mass spectrometers, methods for separation and detection of intact proteins for proteome-scale analyses are still in a developmental phase. Here we report robust protocols for online LC-MS to drive high-throughput top-down proteomics in a fashion similar to that of bottom-up proteomics. Comparative work on protein standards showed that a polymeric stationary phase led to superior sensitivity over a silica-based medium in reversed-phase nanocapillary LC, with detection of proteins >50 kDa routinely accomplished in the linear ion trap of a hybrid Fourier transform mass spectrometer. Protein identification was enabled by nozzle-skimmer dissociation and detection of fragment ions with <10 ppm mass accuracy for highly specific database searching using tailored software. This overall approach led to identification of proteins up to 80 kDa, with 10-60 proteins identified in single LC-MS runs of samples from yeast and human cell lines prefractionated by their molecular mass using a gel-based sieving system.


Molecular BioSystems | 2010

The emerging process of Top Down mass spectrometry for protein analysis: biomarkers, protein-therapeutics, and achieving high throughput

John F. Kellie; John C. Tran; Ji Eun Lee; Dorothy R. Ahlf; Haylee M. Thomas; Ioanna Ntai; Adam D. Catherman; Kenneth R. Durbin; Leonid Zamdborg; Adaikkalam Vellaichamy; Paul M. Thomas; Neil L. Kelleher

Top Down mass spectrometry (MS) has emerged as an alternative to common Bottom Up strategies for protein analysis. In the Top Down approach, intact proteins are fragmented directly in the mass spectrometer to achieve both protein identification and characterization, even capturing information on combinatorial post-translational modifications. Just in the past two years, Top Down MS has seen incremental advances in instrumentation and dedicated software, and has also experienced a major boost from refined separations of whole proteins in complex mixtures that have both high recovery and reproducibility. Combined with steadily advancing commercial MS instrumentation and data processing, a high-throughput workflow covering intact proteins and polypeptides up to 70 kDa is directly visible in the near future.


Nature Methods | 2012

A protease for 'middle-down' proteomics

Cong Wu; John C. Tran; Leonid Zamdborg; Kenneth R. Durbin; Mingxi Li; Dorothy R. Ahlf; Bryan P. Early; Paul M. Thomas; Jonathan V. Sweedler; Neil L. Kelleher

We developed a method for restricted enzymatic proteolysis using the outer membrane protease T (OmpT) to produce large peptides (>6.3 kDa on average) for mass spectrometry–based proteomics. Using this approach to analyze prefractionated high-mass HeLa proteins, we identified 3,697 unique peptides from 1,038 proteins. We demonstrated the ability of large OmpT peptides to differentiate closely related protein isoforms and to enable the detection of many post-translational modifications.


Journal of Proteome Research | 2009

Tandem Mass Spectrometry with Ultrahigh Mass Accuracy Clarifies Peptide Identification by Database Retrieval

Michael T. Boyne; Benjamin A. Garcia; Mingxi Li; Leonid Zamdborg; Craig D. Wenger; Shannee Babai; Neil L. Kelleher

A platform was developed to analyze MS/MS spectra from large peptides with low part-per-million mass accuracy, including a commercial-grade software suite. Termed Middle Down Proteomics, this platform identified 7454 peptides from 2-20 kDa (1472 unique) from 555 proteins after 23 LC-MS/MS injections of Lys-C digests of HeLa-S3 nuclear proteins. Along with greatly increased confidence for both peptide identification (expectation values from 10(-89) to 10(-4)) and characterization (up to 18% of peptides were modified in some LC-MS/MS runs), fragmentation data with <2 ppm accuracy enabled error tolerant and routine multiplexed database searching-all clearly demonstrated in this study.


Journal of Proteomics | 2013

Differential lysine acetylation profiles of Erwinia amylovora strains revealed by proteomics.

Xia Wu; Adaikkalam Vellaichamy; Dongping Wang; Leonid Zamdborg; Neil L. Kelleher; Steven C. Huber; Youfu Zhao

Protein lysine acetylation (LysAc) has recently been demonstrated to be widespread in E. coli and Salmonella, and to broadly regulate bacterial physiology and metabolism. However, LysAc in plant pathogenic bacteria is largely unknown. Here we first report the lysine acetylome of Erwinia amylovora, an enterobacterium causing serious fire blight disease of apples and pears. Immunoblots using generic anti-lysine acetylation antibodies demonstrated that growth conditions strongly affected the LysAc profiles in E. amylovora. Differential LysAc profiles were also observed for two E. amylovora strains, known to have differential virulence in plants, indicating translational modification of proteins may be important in determining virulence of bacterial strains. Proteomic analysis of LysAc in two E. amylovora strains identified 141 LysAc sites in 96 proteins that function in a wide range of biological pathways. Consistent with previous reports, 44% of the proteins are involved in metabolic processes, including central metabolism, lipopolysaccharide, nucleotide and amino acid metabolism. Interestingly, for the first time, several proteins involved in E. amylovora virulence, including exopolysaccharide amylovoran biosynthesis- and type III secretion-associated proteins, were found to be lysine acetylated, suggesting that LysAc may play a major role in bacterial virulence. Comparative analysis of LysAc sites in E. amylovora and E. coli further revealed the sequence and structural commonality for LysAc in the two organisms. Collectively, these results reinforce the notion that LysAc of proteins is widespread in bacterial metabolism and virulence.


Molecular & Cellular Proteomics | 2010

Endogenous Peptide Discovery of the Rat Circadian Clock A FOCUSED STUDY OF THE SUPRACHIASMATIC NUCLEUS BY ULTRAHIGH PERFORMANCE TANDEM MASS SPECTROMETRY

Ji Eun Lee; Norman Atkins; Nathan G. Hatcher; Leonid Zamdborg; Martha U. Gillette; Jonathan V. Sweedler; Neil L. Kelleher

Understanding how a small brain region, the suprachiasmatic nucleus (SCN), can synchronize the bodys circadian rhythms is an ongoing research area. This important time-keeping system requires a complex suite of peptide hormones and transmitters that remain incompletely characterized. Here, capillary liquid chromatography and FTMS have been coupled with tailored software for the analysis of endogenous peptides present in the SCN of the rat brain. After ex vivo processing of brain slices, peptide extraction, identification, and characterization from tandem FTMS data with <5-ppm mass accuracy produced a hyperconfident list of 102 endogenous peptides, including 33 previously unidentified peptides, and 12 peptides that were post-translationally modified with amidation, phosphorylation, pyroglutamylation, or acetylation. This characterization of endogenous peptides from the SCN will aid in understanding the molecular mechanisms that mediate rhythmic behaviors in mammals.

Collaboration


Dive into the Leonid Zamdborg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John C. Tran

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ioanna Ntai

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge