Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leonidas G. Bachas is active.

Publication


Featured researches published by Leonidas G. Bachas.


Mikrochimica Acta | 1998

Oriented immobilization of proteins

Srivatsa V. Rao; Kimberly W. Anderson; Leonidas G. Bachas

Immobilized enzymes have found numerous applications in analytical, clinical, environmental and industrial chemistry. However, in most cases, immobilization leads to partial or total loss of activity. It is widely believed that the loss in activity is due to attachment of proteins on the immobilization support through several amino acid residues. This results in a random orientation of the immobilized protein and in increased structural deformation due to multi-point attachment. Several researchers have explored ways to orient proteins on surfaces, such that orderly organization, single point attachment and accessibility of the active site (or binding site) are possible. This article reviews the various approaches available to achieve oriented immobilization of proteins and its applications in several disciplines.


Toxicology Letters | 2008

Alumina nanoparticles induce expression of endothelial cell adhesion molecules

Elizabeth Oesterling; Nitin Chopra; Vasileios Gavalas; Xabier Arzuaga; Eun Jin Lim; Rukhsana Sultana; D. Allan Butterfield; Leonidas G. Bachas; Bernhard Hennig

Nanotechnology is a rapidly growing industry that has elicited much concern because of the lack of available toxicity data. Exposure to ultrafine particles may be a risk for the development of vascular diseases due to dysfunction of the vascular endothelium. Increased endothelial adhesiveness is a critical first step in the development of vascular diseases, such as atherosclerosis. The hypothesis that alumina nanoparticles increase inflammatory markers of the endothelium, measured by the induction of adhesion molecules as well as the adhesion of monocytes to the endothelial monolayer, was tested. Following characterization of alumina nanoparticles by transmission electron microscopy (TEM), electron diffraction, and particle size distribution analysis, endothelial cells were exposed to alumina at various concentrations and times. Both porcine pulmonary artery endothelial cells and human umbilical vein endothelial cells showed increased mRNA and protein expression of VCAM-1, ICAM-1, and ELAM-1. Furthermore, human endothelial cells treated with alumina particles showed increased adhesion of activated monocytes. The alumina particles tended to agglomerate at physiological pH in serum-containing media, which led to a range of particle sizes from nano to micron size during treatment conditions. These data show that alumina nanoparticles can elicit a proinflammatory response and thus present a cardiovascular disease risk.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Reactive nanostructured membranes for water purification

Scott R. Lewis; Saurav Datta; Minghui Gui; Eric L. Coker; Frank E. Huggins; Sylvia Daunert; Leonidas G. Bachas; Dibakar Bhattacharyya

Many current treatments for the reclamation of contaminated water sources are chemical-intensive, energy-intensive, and/or require posttreatment due to unwanted by-product formation. We demonstrate that through the integration of nanostructured materials, enzymatic catalysis, and iron-catalyzed free radical reactions within pore-functionalized synthetic membrane platforms, we are able to conduct environmentally important oxidative reactions for toxic organic degradation and detoxification from water without the addition of expensive or harmful chemicals. In contrast to conventional, passive membrane technologies, our approach utilizes two independently controlled, nanostructured membranes in a stacked configuration for the generation of the necessary oxidants. These include biocatalytic and organic/inorganic (polymer/iron) nanocomposite membranes. The bioactive (top) membrane contains an electrostatically immobilized enzyme for the catalytic production of one of the main reactants, hydrogen peroxide (H2O2), from glucose. The bottom membrane contains either immobilized iron ions or ferrihydrite/iron oxide nanoparticles for the decomposition of hydrogen peroxide to form powerful free radical oxidants. By permeating (at low pressure) a solution containing a model organic contaminant, such as trichlorophenol, with glucose in oxygen-saturated water through the membrane stack, significant contaminant degradation was realized. To illustrate the effectiveness of this membrane platform in real-world applications, membrane-immobilized ferrihydrite/iron oxide nanoparticles were reacted with hydrogen peroxide to form free radicals for the degradation of a chlorinated organic contaminant in actual groundwater. Although we establish the development of these nanostructured materials for environmental applications, the practical and methodological advances demonstrated here permit the extension of their use to applications including disinfection and/or virus inactivation.


Journal of Membrane Science | 2001

Catalytic biofunctional membranes containing site-specifically immobilized enzyme arrays: a review

D. Allan Butterfield; D. Bhattacharyya; Sylvia Daunert; Leonidas G. Bachas

Abstract Biofunctional membranes normally involve the random immobilization of biomolecules to porous, polymeric membranes, often through the numerous lysine residues on the protein. In this process, bioactivity is significantly decreased largely due to different orientations of the biomolecule with respect to the membrane or to multiple point attachment. To circumvent this difficulty, while still taking advantage of the immobilization of biomolecules, site-specific immobilization of the biomolecule with the active (or binding) site directed away from the membrane is essential. In this review, we summarize our efforts involving biophysical and bioanalytical chemistry and chemical engineering, together with molecular biology, to develop and characterize such site-specifically membrane immobilized catalytic enzyme bioreactors. Site-directed mutagenesis, gene fusion technology, and post-translational modification methods are employed to effectuate the site-specific membrane immobilization. Electron paramagnetic resonance, in conjunction with active-site specific spin labels, kinetic analyses, and membrane properties are used to characterize these systems. Biofunctional membranes incorporating site-specifically immobilized biomolecules provide greater efficiency of biocatalysis, bioseparations, and bioanalysis.


Biosensors and Bioelectronics | 2001

Monitoring of bacteria growth using a wireless, remote query resonant-circuit sensor: application to environmental sensing

Keat Ghee Ong; Jianquan Wang; R.S. Singh; Leonidas G. Bachas; Craig A. Grimes

A new technique is presented for in-vivo remote query measurement of the complex permittivity spectra of a biological culture solution. A sensor comprised of a printed inductor-capacitor resonant-circuit is placed within the culture solution of interest, with the impedance spectrum of the sensor measured using a remotely located loop antenna; the complex permittivity spectra of the culture is calculated from the measured impedance spectrum. The remote query nature of the sensor platform enables, for example, the in-vivo real-time monitoring of bacteria or yeast growth from within sealed opaque containers. The wireless monitoring technique does not require a specific alignment between sensor and antenna. Results are presented for studies conducted on laboratory strains of Bacillus subtilis, Escherichia coli JM109, Pseudomonas putida and Saccharomyces cerevisiae.


Biosensors and Bioelectronics | 2003

Monitoring blood coagulation with magnetoelastic sensors

Libby G. Puckett; Gary Barrett; Dimitris Kouzoudis; Craig A. Grimes; Leonidas G. Bachas

The determination of blood coagulation time is an essential part of monitoring therapeutic anticoagulants. Standard methodologies for the measurement of blood clotting time require dedicated personnel and involve blood sampling procedures. A new method based on magnetoelastic sensors has been employed for the monitoring of blood coagulation. The ribbon-like magnetoelastic sensor oscillates at a fundamental frequency, which shifts linearly in response to applied mass loads or a fixed mass load of changing elasticity. The magnetoelastic sensors emit magnetic flux, which can be detected by a remotely located pick-up coil, so that no direct physical connections are required. During blood coagulation, the viscosity of blood changes due to the formation of a soft fibrin clot. In turn, this change in viscosity shifts the characteristic resonance frequency of the magnetoelastic sensor enabling real-time continuous monitoring of this biological event. By monitoring the signal output as a function of time, a distinct blood clotting profile can be seen. The relatively low cost of the magnetoelastic ribbons enables their use as disposable sensors. This, along with the reduced volume of blood required, make the magnetoelastic sensors well suited for at-home and point-of-care testing devices.


Biotechnology and Bioengineering | 1999

Controlled layer-by-layer immobilization of horseradish peroxidase.

Srivatsa V. Rao; Kimberly W. Anderson; Leonidas G. Bachas

Horseradish peroxidase (HRP) was biotinylated with biotinamidocaproate N-hydroxysuccinimide ester (BcapNHS) in a controlled manner to obtain biotinylated horseradish peroxidase (Bcap-HRP) with two biotin moieties per enzyme molecule. Avidin-mediated immobilization of HRP was achieved by first coupling avidin on carboxy-derivatized polystyrene beads using a carbodiimide, followed by the attachment of the disubstituted biotinylated horseradish peroxidase from one of the two biotin moieties through the avidin-biotin interaction (controlled immobilization). Another layer of avidin can be attached to the second biotin on Bcap-HRP, which can serve as a protein linker with additional Bcap-HRP, leading to a layer-by-layer protein assembly of the enzyme. Horseradish peroxidase was also immobilized directly on carboxy-derivatized polystyrene beads by carbodiimide chemistry (conventional method). The reaction kinetics of the native horseradish peroxidase, immobilized horseradish peroxidase (conventional method), controlled immobilized biotinylated horseradish peroxidase on avidin-coated beads, and biotinylated horseradish peroxidase crosslinked to avidin-coated polystyrene beads were all compared. It was observed that in solution the biotinylated horseradish peroxidase retained 81% of the unconjugated enzymes activity. Also, in solution, horseradish peroxidase and Bcap-HRP were inhibited by high concentrations of the substrate hydrogen peroxide. The controlled immobilized horseradish peroxidase could tolerate much higher concentrations of hydrogen peroxide and, thus, it demonstrates reduced substrate inhibition. Because of this, the activity of controlled immobilized horseradish peroxidase was higher than the activity of Bcap-HRP in solution. It is shown that a layer-by-layer assembly of the immobilized enzyme yields HRP of higher activity per unit surface area of the immobilization support compared to conventionally immobilized enzyme.


Analytical Letters | 2007

Functional One‐Dimensional Nanomaterials: Applications in Nanoscale Biosensors

Nitin Chopra; Vasilis G. Gavalas; Leonidas G. Bachas; Bruce J. Hinds

Abstract Nanostructures such as nanotubes (NTs), nanowires (NWs), and nanoparticles present new opportunities as sensing platforms for biological and environmental applications. Having micrometer‐scale lengths and nanometer‐scale diameters, NTs and NWs can be manipulated with current microfabrication, as well as self‐assembly techniques to fabricate nanoscale devices and sensors. Alignment, uniform dispersion, selective growth, and diameter control are parameters that are critical to the successful integration of nanostructures into sensors and devices. Overcoming these challenges should lead to sensors with better selectivity, sensitivity, and longer operational lifetime. This review discusses biosensors based on nanostructured material.


Optics Express | 2007

Optimal self-referenced sensing using long- and short- range surface plasmons

J. T. Hastings; Jing Guo; P. D. Keathley; P. B. Kumaresh; Yinan Wei; Stacy A. Law; Leonidas G. Bachas

Dual-mode surface-plasmon resonance (SPR) sensors use both long- and short- range surface plasmon waves to differentiate surface binding interactions from interfering bulk effects. We have optimized the design of these sensors for minimum surface limit of detection (LOD) using a Cramer-Rao lower bound for spectral shift estimation. Despite trade-offs between resonance width, minimum reflectivity, and sensitivity for the two modes, a range of reasonable design parameters provides nearly optimal performance. Experimental verification using biotin-streptavidin binding as a model system reveals that sensitivity and LOD for dual-mode sensors remains competitive with single-mode sensors while compensating for bulk effects.


Analytical Chemistry | 1997

Salicylate-selective electrode based on a biomimetic guanidinium ionophore.

Richard S. Hutchins; Preeti Bansal; Pedro Molina; Mateo Alajarin; and Ángel Vidal; Leonidas G. Bachas

A biomimetic strategy was employed in the development of oxoanion-selective ionophores containing the guanidinium functional group. These ionophores mimic the selective interaction observed between arginine residues of proteins and oxoanions. In previous work, it was demonstrated that a structurally rigid guanidinium ionophore exhibited excellent hydrogen sulfite selectivity (Anal. Chem. 1994, 66, 3188-3192). Herein, we describe guanidinium-containing ionophores that are selective for the oxoanion salicylate. The ability to rationally design anion-selective electrodes through this biomimetic strategy, and to both alter selectivity and improve response characteristics through structural changes to the ionophore, has been demonstrated. (1)H-NMR complexation and modeling studies were used to examine and correlate the selectivity observed with the structure of the guanidinium compounds.

Collaboration


Dive into the Leonidas G. Bachas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc Madou

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge