Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leonidas Matsakas is active.

Publication


Featured researches published by Leonidas Matsakas.


Bioresource Technology | 2013

Fermentation of liquefacted hydrothermally pretreated sweet sorghum bagasse to ethanol at high-solids content.

Leonidas Matsakas; Paul Christakopoulos

The ability of sweet sorghum bagasse to be utilized as feedstock for ethanol production at high initial dry matter concentration was investigated. In order to achieve high enzymatic hydrolysis yield, a hydrothermal pretreatment prior to liquefaction and saccharification was applied. Response surface methodology had been employed in order to optimize the pretreatment step, taking into account the yield of cellulose hydrolysis. Liquefaction of the pretreated bagasse was performed at a specially designed liquefaction chamber at 50 °C for either 12 or 24h using an enzyme loading of 10 FPU/g · DM and 18% DM. Fermentation of liquefacted bagasse was not affected by liquefaction duration and leaded to an ethanol production of 41.43 g/L and a volumetric productivity of 1.88 g/Lh. The addition of extra enzymes at the start up of SSF enhanced both ethanol concentration and volumetric productivity by 16% and 17% after 12 and 24h saccharification, respectively.


Frontiers in Microbiology | 2015

Sequential parametric optimization of methane production from different sources of forest raw material

Leonidas Matsakas; Ulrika Rova; Paul Christakopoulos

The increase in environmental problems and the shortage of fossil fuels have led to the need for action in the development of sustainable and renewable fuels. Methane is produced through anaerobic digestion of organic materials and is a biofuel with very promising characteristics. The success in using methane as a biofuel has resulted in the operation of several commercial-scale plants and the need to exploit novel materials to be used. Forest biomass can serve as an excellent candidate for use as raw material for anaerobic digestion. During this work, both hardwood and softwood species—which are representative of the forests of Sweden—were used for the production of methane. Initially, when untreated forest materials were used for the anaerobic digestion, the yields obtained were very low, even with the addition of enzymes, reaching a maximum of only 40 mL CH4/g VS when birch was used. When hydrothermal pretreatment was applied, the enzymatic digestibility improved up to 6.7 times relative to that without pretreatment, and the yield of methane reached up to 254 mL CH4/g VS. Then the effect of chemical/enzymatic detoxification was examined, where laccase treatment improved the methane yield from the more harshly pretreated materials while it had no effect on the more mildly pretreated material. Finally, addition of cellulolytic enzymes during the digestion improved the methane yields from spruce and pine, whereas for birch separate saccharification was more beneficial. To achieve high yields in spruce 30 filter paper units (FPU)/g was necessary, whereas 15 FPU/g was enough when pine and birch were used. During this work, the highest methane yields obtained from pine and birch were 179.9 mL CH4/g VS and 304.8 mL CH4/g VS, respectively. For mildly and severely pretreated spruce, the methane yields reached 259.4 mL CH4/g VS and 276.3 mL CH4/g VS, respectively. We have shown that forest material can serve as raw material for efficient production of methane. The initially low yields from the untreated materials were significantly improved by the introduction of a hydrothermal pretreatment. Moreover, enzymatic detoxification was beneficial, but mainly for severely pretreated materials. Finally, enzymatic saccharification increased the methane yields even further.


BioMed Research International | 2014

Evaluation of Dried Sweet Sorghum Stalks as Raw Material for Methane Production

Leonidas Matsakas; Ulrika Rova; Paul Christakopoulos

The potential of utilizing dried sweet sorghum stalks as raw material for anaerobic digestion has been evaluated. Two different treatments were tested, a mild thermal and an enzymatic, alone or in combination. Thermal pretreatment was found to decrease the methane yields, whereas one-step enzymatic treatment resulted in a significant increase of 15.1% comparing to the untreated sweet sorghum. Subsequently, in order to increase the total methane production, the combined effect of enzyme load and I/S on methane yields from sweet sorghum was evaluated by employing response surface methodology. The obtained model showed that the maximum methane yield that could be achieved is 296 mL CH4/g VS at I/S ratio of 0.35 with the addition of 11.12 FPU/g sweet sorghum.


Bioresource Technology | 2017

Sequential high gravity ethanol fermentation and anaerobic digestion of steam explosion and organosolv pretreated corn stover

Constantinos Katsimpouras; Maria Zacharopoulou; Leonidas Matsakas; Ulrika Rova; Paul Christakopoulos; Evangelos Topakas

The present work investigates the suitability of pretreated corn stover (CS) to serve as feedstock for high gravity (HG) ethanol production at solids-content of 24wt%. Steam explosion, with and without the addition of H2SO4, and organosolv pretreated CS samples underwent a liquefaction/saccharification step followed by simultaneous saccharification and fermentation (SSF). Maximum ethanol concentration of ca. 76g/L (78.3% ethanol yield) was obtained from steam exploded CS (SECS) with 0.2% H2SO4. Organosolv pretreated CS (OCS) also resulted in high ethanol concentration of ca. 65g/L (62.3% ethanol yield). Moreover, methane production through anaerobic digestion (AD) was conducted from fermentation residues and resulted in maximum methane yields of ca. 120 and 69mL/g volatile solids (VS) for SECS and OCS samples, respectively. The results indicated that the implementation of a liquefaction/saccharification step before SSF employing a liquefaction reactor seemed to handle HG conditions adequately.


Current Biochemical Engineering | 2014

New trends in microbial production of 3-hydroxypropionic acid

Leonidas Matsakas; Evangelos Topakas; Paul Christakopoulos

Production of bio-based chemicals nowadays is more crucial than ever. 3-Hydroxypropionic acid can serve as a building block chemical for the production of other high added value chemicals, fact tha ...


Frontiers in Microbiology | 2016

Development of Thermophilic Tailor-Made Enzyme Mixtures for the Bioconversion of Agricultural and Forest Residues

Anthi Karnaouri; Leonidas Matsakas; Evangelos Topakas; Ulrika Rova; Paul Christakopoulos

Even though the main components of all lignocellulosic feedstocks include cellulose, hemicellulose, as well as the protective lignin matrix, there are some differences in structure, such as in hardwoods and softwoods, which may influence the degradability of the materials. Under this view, various types of biomass might require a minimal set of enzymes that has to be tailor-made. Partially defined complex mixtures that are currently commercially used are not adapted to efficiently degrade different materials, so novel enzyme mixtures have to be customized. Development of these cocktails requires better knowledge about the specific activities involved, in order to optimize hydrolysis. The role of filamentous fungus Myceliophthora thermophila and its complete enzymatic repertoire for the bioconversion of complex carbohydrates has been widely proven. In this study, four core cellulases (MtCBH7, MtCBH6, MtEG5, and MtEG7), in the presence of other four “accessory” enzymes (mannanase, lytic polyssacharide monooxygenase MtGH61, xylanase, MtFae1a) and β-glucosidase MtBGL3, were tested as a nine-component cocktail against one model substrate (phosphoric acid swollen cellulose) and four hydrothermally pretreated natural substrates (wheat straw as an agricultural waste, birch, and spruce biomass, as forest residues). Synergistic interactions among different enzymes were determined using a suitable design of experiments methodology. The results suggest that for the hydrolysis of the pure substrate (PASC), high proportions of MtEG7 are needed for efficient yields. MtCBH7 and MtEG7 are enzymes of major importance during the hydrolysis of pretreated wheat straw, while MtCBH7 plays a crucial role in case of spruce. Cellobiohydrolases MtCBH6 and MtCBH7 act in combination and are key enzymes for the hydrolysis of the hardwood (birch). Optimum combinations were predicted from suitable statistical models which were able to further increase hydrolysis yields, suggesting that tailor-made enzyme mixtures targeted toward a particular residual biomass can help maximize hydrolysis yields. The present work demonstrates the change from “one cocktail for all” to “tailor-made cocktails” that are needed for the efficient saccharification of targeted feed stocks prior to the production of biobased products through the biorefinery concept.


BioMed Research International | 2015

Evaluation of Mediterranean Agricultural Residues as a Potential Feedstock for the Production of Biogas via Anaerobic Fermentation

Christos Nitsos; Leonidas Matsakas; Kostas S. Triantafyllidis; Ulrika Rova; Paul Christakopoulos

Hydrothermal, dilute acid, and steam explosion pretreatment methods, were evaluated for their efficiency to improve the methane production yield of three Mediterranean agricultural lignocellulosic residues such as olive tree pruning, grapevine pruning, and almond shells. Hydrothermal and dilute acid pretreatments provided low to moderate increase in the digestibility of the biomass samples, whereas steam explosion enabled the highest methane yields to be achieved for almond shells at 232.2 ± 13.0 mL CH4/gVS and olive pruning at 315.4 ± 0.0 mL CH4/gVS. Introduction of an enzymatic prehydrolysis step moderately improved methane yields for hydrothermal and dilute acid pretreated samples but not for the steam exploded ones.


Biofuels | 2017

Investigation of different pretreatment methods of Mediterranean-type ecosystem agricultural residues: characterisation of pretreatment products, high-solids enzymatic hydrolysis and bioethanol production

Christos Nitsos; Leonidas Matsakas; Kostas S. Triantafyllidis; Ulrika Rova; Paul Christakopoulos

ABSTRACT Agricultural and agro-industrial lignocellulosic residues represent an important renewable resource for the production of fuels and chemicals towards a bio-based economy. Olive pruning, vineyard pruning and almond shells are important residues from agricultural activities in Mediterranean-type ecosystems. In the current work, bioethanol production from the above three types of agro-residues was studied, focusing on the effect of different pretreatment methods on enzymatic saccharrification efficiency of cellulose and production of second-generation bioethanol. Dilute acid, hydrothermal and steam explosion pretreatments were compared in order to remove hemicellulose and facilitate the subsequent enzymatic hydrolysis of the hemicellulose-deficient biomass to glucose. Enzymatic hydrolysis was performed in a free-fall mixing reactor enabling high solids loading of 23% w/w. This allowed hydrolysis of up to 67% of available cellulose in almond shells and close to 50% in olive pruning samples, and facilitated high ethanol production in the subsequent fermentation step; the highest ethanol concentrations achieved were 47.8 g/L for almond shells after steam explosion and 42 g/L for hydrothermally pretreated olive pruning residue.


Fems Microbiology Letters | 2016

Catalytic upgrading of butyric acid towards fine chemicals and biofuels

Magnus Sjöblom; Leonidas Matsakas; Paul Christakopoulos; Ulrika Rova

Fermentation-based production of butyric acid is robust and efficient. Modern catalytic technologies make it possible to convert butyric acid to important fine chemicals and biofuels. Here, current chemocatalytic and biocatalytic conversion methods are reviewed with a focus on upgrading butyric acid to 1-butanol or butyl-butyrate. Supported Ruthenium- and Platinum-based catalyst and lipase exhibit important activities which can pave the way for more sustainable process concepts for the production of green fuels and chemicals.


Bioresource Technology | 2017

Acetate-detoxification of wood hydrolysates with alkali tolerant Bacillus sp. as a strategy to enhance the lipid production from Rhodosporidium toruloides

Leonidas Matsakas; Katharina Novak; Josefine Enman; Paul Christakopoulos; Ulrika Rova

The aim of the current work was to convert an acetate-rich hemicellulose liquid fraction (LF) from hot-water extraction of Betula pendula to oils for biodiesel, with Rhodosporidium toruloides. The toxicity of acetate was circumvented by biological detoxification with an isolated alkali-tolerant and acetate-resistant Bacillus sp. strain. Removal of other lignocellulose-derived inhibitors, such as furfural and phenols, was evaluated by two strategies; an activated carbon (AC) treatment of the undiluted LF, and dilution of the LF by 25% (0.75LF) and 50%. (0.50LF). The bacterium consumed most of the acetic acid in 6-8days in the treated or diluted media, which were subsequently used for cultivation of the yeast, for conversion of sugars to oils. The oil concentration reached 2.8 and 1.8g/L, in the AC LF and 0.75LF medium, respectively. In comparison, the oil accumulation in the same media without prior cultivation of Bacillus sp. was 0.86 and 0.03g/L, respectively.

Collaboration


Dive into the Leonidas Matsakas's collaboration.

Top Co-Authors

Avatar

Paul Christakopoulos

Luleå University of Technology

View shared research outputs
Top Co-Authors

Avatar

Ulrika Rova

Luleå University of Technology

View shared research outputs
Top Co-Authors

Avatar

Christos Nitsos

Luleå University of Technology

View shared research outputs
Top Co-Authors

Avatar

Evangelos Topakas

National Technical University of Athens

View shared research outputs
Top Co-Authors

Avatar

Alok Patel

Luleå University of Technology

View shared research outputs
Top Co-Authors

Avatar

Anthi Karnaouri

Luleå University of Technology

View shared research outputs
Top Co-Authors

Avatar

Lisbeth Olsson

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Magnus Sjöblom

Luleå University of Technology

View shared research outputs
Top Co-Authors

Avatar

Vijayendran Raghavendran

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Dimitrij Vörös

Luleå University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge