Leonie A. Robinson
University of Liverpool
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Leonie A. Robinson.
Ecological Applications | 2013
Antony M. Knights; Rebecca Koss; Leonie A. Robinson
The marine environment is heavily exploited, but unintentional consequences cause wide-ranging negative effects to its characteristics. Linkage frameworks (e.g., DPSIR [driver-pressure-state-impact-response]) are commonly used to describe an interaction between human activities and ecological characteristics of the ecosystem, but as each linkage is viewed independently, the diversity of pressures that affect those characteristics may not be identified or managed effectively. Here we demonstrate an approach for using linkages to build a simple network to capture the complex relationships arising from multiple sectors and their activities. Using data-analysis tools common to ecology, we show how linkages can be placed into mechanistically similar groups. Management measures can be combined into fewer and more simplified measures that target groups of pressures rather than individual pressures, which is likely to increase compliance and the success of the measure while reducing the cost of enforcement. Given that conservation objectives (regional priorities) can vary, we also demonstrate by way of a case study example from the Marine Strategy Framework Directive, how management priorities might change, and illustrate how the approach can be used to identify sectors for control that best support the conservation objectives.
Journal of Fish Biology | 2013
N. C. Eno; Chris Frid; K. Hall; K. Ramsay; R. A. M. Sharp; D. P. Brazier; S. Hearn; K. M. Dernie; K. A. Robinson; Odette Paramor; Leonie A. Robinson
In the Welsh part of the Irish Sea, a method was developed for assessing the sensitivity of different seabed habitats to existing fishing activities, across a range of potential fishing intensities. The resistance of 31 habitats and their associated biological assemblage to damage by 14 categories of fishing activity were assessed along with the rate at which each habitat would recover following impact (resilience). Sensitivity was scored based on a combination of the resistance of a habitat to damage and its subsequent rate of recovery. The assessments were based, wherever possible, on scientific literature, with expert judgement used to extrapolate results to habitat and gear combinations not directly examined in the published literature. The resulting sensitivity matrices were then subject to further peer review at a series of workshops. Following consensus on the habitat sensitivity, these data were combined with the most resolved sea-floor habitat maps. These habitat sensitivity maps can help inform the development of site-specific management plans, as well as having a place in spatial planning and aiding managers in developing dialogue with other stakeholders. A case study of their application is provided.
Journal of the Marine Biological Association of the United Kingdom | 2010
Leonie A. Robinson; Simon P. R. Greenstreet; H. Reiss; Ruth Callaway; J.A. Craeymeersch; I.J. de Boois; S. Degraer; Siegfried Ehrich; H.M. Fraser; A. Goffin; I. Kroncke; L. Lindal Jorgenson; M.R. Robertson; John Lancaster
Size-based analyses of marine animals are increasingly used to improve understanding of community structure and function. However, the resources required to record individual body weights for benthic animals, where the number of individuals can reach several thousand in a square metre, are often prohibitive. Here we present morphometric (length weight) relationships for 216 benthic species from the North Sea to permit weight estimation from length measurements. These relationships were calculated using data collected over two years from 283 stations. For ten abundant and widely dispersed species we tested for significant spatial and temporal differences in morphometric relationships. Some were found, but the magnitude of differences was small in relation to the size-ranges of animals that are usually present and we recommend that the regression relationships given here, based on pooled data, are appropriate for most types of population and community analyses. Our hope is that the availability of these morphometric relationships will encourage the more frequent application of size-based analyses to ben hue survey data, and so enhance understanding of the ecology of the benthic/demersal component of marine ecosystems and food webs.
AMBIO: A Journal of the Human Environment | 2008
Leonie A. Robinson; Chris Frid
Abstract The organisms living on and in the sea floor, the benthos, represent an important ecological group. Although some (shellfish) have an economic value, most do not, and so little long-term data are available. We have identified three sources of historic benthic data for the North Sea, a regional sea that has been subjected to multiple human impacts for at least several hundred years. Each dataset has its limitations, but by their use together some issues emerge. Wider community shifts were observed in the shorter term and a number of extirpations at the scale of the North Sea were seen over longer time scales. The extirpated taxa share a number of characteristics consistent with an effect of fisheries such as fragile morphology. We must concentrate now on furthering our understanding of the ecological significance of shifts in dominance of particular functional units and protecting those habitats and species most vulnerable to fisheries-driven extirpation.
PLOS ONE | 2013
Sally A. Bracewell; Leonie A. Robinson; Louise B. Firth; Antony M. Knights
Artificial structures can create novel habitat in the marine environment that has been associated with the spread of invasive species. They are often located in areas of high disturbance and can vary significantly in the area of free space provided for settlement of marine organisms. Whilst correlation between the amount of free space available and recruitment success has been shown in populations of several marine benthic organisms, there has been relatively little focus on invasive species, a group with the potential to reproduce in vast numbers and colonise habitats rapidly. Invasion success following different scales of disturbance was examined in the invasive acorn barnacle, Austrominius modestus , on a unique art installation located in Liverpool Bay. Population growth and recruitment success were examined by comparing recruitment rates within disturbance clearings of 4 different sizes and by contrasting population development with early recruitment rates over a 10 week period. Disturbed areas were rapidly recolonised and monocultures of A . modestus formed within 6 weeks. The size of patch created during disturbance had no effect on the rate of recruitment, while a linear relationship between recruit density and patch size was observed. Density-dependent processes mediated initial high recruitment resulting in population stability after 8-10 weeks, but densities continued to greatly exceed those reported in natural habitats. Given that artificial structures are likely to continue to proliferate in light of climate change projections, free-space is likely to become more available more frequently in the future supporting the expansion of fast-colonising species.
Marine Environmental Research | 2013
Finbarr G. O'Neill; M. Robertson; Keith Summerbell; M. Breen; Leonie A. Robinson
We present the results of experiments to assess the immediate impact of scallop dredging on the seabed sediment and on the inhabiting infauna. The passage of the scallop dredge is shown to homogenise the seabed, flattening sand ripples. The turbulent wake entrains up to the equivalent of a 1 mm layer of sediment per unit of swept width, although an analysis of the finer particles material implies that the suspended silt material must originate from depths of at least 10 mm. The species most abundant in the sediment plume either swim actively in the water column or are found in, or on, the upper layers of the substrate, whereas those most abundant in core samples taken from the sediment, but not present in the net samples, are almost all tube-building or deep burrowing. The vertical stratification of sediment concentration and of animal numbers in the water column suggests that even if some of these species respond actively to the presence of the dredge, once entrained, they are transported more or less passively in the same way as the larger sediment particles. There was no difference between the core samples taken before or after towing suggesting that animals mobilised by the dredge resettle in the tow path. Our analysis does not provide any information regarding the fate of these animals.
PLOS ONE | 2012
Sally A. Bracewell; Matthew Spencer; R.H. Marrs; Matthew Iles; Leonie A. Robinson
The proliferation of anthropogenic infrastructure in the marine environment has aided the establishment and spread of invasive species. These structures can create novel habitats in areas normally characterised as void of suitable settlement sites. The habitat requirements of the invasive acorn barnacle Austrominius modestus (Darwin, 1854) were assessed using a novel sampling site at Crosby Beach, Liverpool. Austrominius modestus has spread rapidly around the UK since its initial introduction, becoming locally dominant in many estuarine areas including the Antony Gormley art installation, ‘Another Place’, at Crosby Beach. The installation consists of 100 replicate solid cast-iron life-size human figures, located at a range of heights on the shore. We recorded the distribution and abundance of A. modestus present on all of the statues at various positions during the summer of 2006. The positions varied in location, exposure, direction, and rugosity. Although parameters such as rugosity and exposure did influence patterns of recruitment, they were less important than interactions between shore height and direction, and specific location on the beach. The addition of a suitable substrate to a sheltered and estuarine region of Liverpool Bay has facilitated the establishment of A. modestus. Understanding the habitat requirements of invasive species is important if we are to make predictions about their spread and the likelihood of invasion success. Austrominius modestus has already become locally dominant in some regions of the UK and, with projections of favourable warming conditions and the global expansion of artificial structures, the continued spread of this species can be expected. The implications of this on the balance between native and invasive species dominance should be considered.
Marine Environmental Research | 2015
David S. Clare; Leonie A. Robinson; Chris Frid
Using established associations between species traits (life history, morphological and behavioural characteristics) and key ecological functions, we applied biological traits analysis (BTA) to investigate the consequences of 40 years of change in two North Sea benthic communities. Ecological functioning (trait composition) was found to be statistically indistinguishable across periods that differed significantly in taxonomic composition. A temporary alteration to functioning was, however, inferred at both sampling stations; coinciding with the North Sea regime shift of the 1980s. Trait composition recovered after 1 year at the station located inside the grounds of a trawl fishery, whereas the station located outside the main area of fishing activity underwent a six-year period of significantly altered, and temporally unstable, trait composition. A further alteration to functioning was inferred at the fished station, when the population of a newly established species rapidly increased in numbers. The results suggest that density compensation by characteristically similar (redundant) taxa acts to buffer changes to ecological functioning over time, but that functional stability is subject to aperiodic disruption due to substitutions of dissimilar taxa or uncompensated population fluctuations. The rate at which ecological functioning stabilises and recovers appears to be dependent on environmental context; e.g. disturbance regime.
PLOS ONE | 2016
Victoria Warwick-Evans; Philip W. Atkinson; Leonie A. Robinson; Jonathan A. Green
During the breeding season seabirds are constrained to coastal areas and are restricted in their movements, spending much of their time in near-shore waters either loafing or foraging. However, in using these areas they may be threatened by anthropogenic activities such as fishing, watersports and coastal developments including marine renewable energy installations. Although many studies describe large scale interactions between seabirds and the environment, the drivers behind near-shore, fine-scale distributions are not well understood. For example, Alderney is an important breeding ground for many species of seabird and has a diversity of human uses of the marine environment, thus providing an ideal location to investigate the near-shore fine-scale interactions between seabirds and the environment. We used vantage point observations of seabird distribution, collected during the 2013 breeding season in order to identify and quantify some of the environmental variables affecting the near-shore, fine-scale distribution of seabirds in Alderney’s coastal waters. We validate the models with observation data collected in 2014 and show that water depth, distance to the intertidal zone, and distance to the nearest seabird nest are key predictors in the distribution of Alderney’s seabirds. AUC values for each species suggest that these models perform well, although the model for shags performed better than those for auks and gulls. While further unexplained underlying localised variation in the environmental conditions will undoubtedly effect the fine-scale distribution of seabirds in near-shore waters we demonstrate the potential of this approach in marine planning and decision making.
PLOS ONE | 2016
David S. Clare; Matthew Spencer; Leonie A. Robinson; Chris Frid
Biological assemblages are constantly undergoing change, with species being introduced, extirpated and experiencing shifts in their densities. Theory and experimentation suggest that the impacts of such change on ecosystem functioning should be predictable based on the biological traits of the species involved. However, interspecific interactions could alter how species affect functioning, with the strength and sign of interactions potentially depending on environmental context (e.g. homogenous vs. heterogeneous conditions) and the function considered. Here, we assessed how concurrent changes to the densities of two common marine benthic invertebrates, Corophium volutator and Hediste diversicolor, affected the ecological functions of organic matter consumption and benthic-pelagic nutrient flux. Complementary experiments were conducted within homogenous laboratory microcosms and naturally heterogeneous field plots. When the densities of the species were increased within microcosms, interspecific interactions enhanced effects on organic matter consumption and reduced effects on nutrient flux. Trait-based predictions of how each species would affect functioning were only consistently supported when the density of the other species was low. In field plots, increasing the density of either species had a positive effect on organic matter consumption (with no significant interspecific interactions) but no effect on nutrient flux. Our results indicate that species-specific effects on ecosystem functioning can be altered by interspecific interactions, which can be either facilitative (positive) or antagonistic (negative) depending on the function considered. The impacts of biodiversity change may therefore not be predictable based solely on the biological traits of the species involved. Possible explanations for why interactions were detected in microcosms but not in the field are discussed.