Leonor Huerta
National Autonomous University of Mexico
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Leonor Huerta.
The Scientific World Journal | 2009
Leonor Huerta; Nayali López-Balderas; Evelyn Rivera-Toledo; Guadalupe Sandoval; Guillermo Gómez-Icazbalceta; Carlos Villarreal; Edmundo Lamoyi; Carlos Larralde
Interaction in vitro between cells infected with human immunodeficiency virus (HIV) and surrounding, uninfected, target cells often leads to cell fusion and the formation of multinucleated cells, called syncytia. The presence in HIV-infected individuals of virus strains able to induce syncytia in cultures of T cells is associated with disease progression and AIDS. Even in the asymptomatic stage of infection, multinucleated cells have been observed in different organs, indicating that fused cells may be generated and remain viable in the tissues of patients. We used lymphocytic cells transfected for the expression of the HIV-envelope (Env) glycoproteins to develop a method for the direct quantification of fusion events by flow cytometry (Huerta et al., 2006, J. Virol. Methods 138, 17–23; López-Balderas et al., 2007, Virus Res. 123, 138–146). The method involves the staining of fusion partners with lipophilic probes and the use of fluorescence resonance energy transfer (FRET) to distinguish between fused and aggregated cells. We have shown that such a flow-cytometry assay is appropriate for the screening of compounds that have the potential to modulate HIV-Env–mediated cell fusion. Even those syncytia that are small or few in numbers can be detected. Quantitative analysis of the fusion products was performed with this technique; the results indicated that the time of reaction and initial proportion of fusion partners determine the number, relative size, and average cellular composition of syncytia. Heterogeneity of syncytia generated by HIV-Env–mediated cell-cell fusion may result in a variety of possible outcomes that, in turn, may influence the biological properties of the syncytia and surrounding cells, as well as replication of virus. Given the myriad immune abnormalities leading to AIDS, the full understanding of the extent, diverse composition, and role of fused cells in the pathogenesis of, and immune response to, HIV infection is an important, pending issue.
Archives of Virology | 2010
Evelyn Rivera-Toledo; Nayali López-Balderas; Leonor Huerta; Edmundo Lamoyi; Carlos Larralde
In human HIV infection, multinucleated cells (syncytia) are formed by fusion of HIV-infected cells with CD4+ cells. In order to examine possible functional implications of syncytia formation for the immune response, the expression of important surface molecules by T-cell syncytia and surrounding cells that remain unfused (bystander cells) was analyzed in cocultures of HIV-Env- and CD4-expressing E6 Jurkat T cells. Fusion partners were differentially labeled with lipophilic probes, and syncytia and bystander cells were identified by flow cytometry. The cellular phenotype and response to activation stimulus after fusion were analyzed with antibodies coupled to third-party fluorochromes. Cocultured unfused E6 cells showed a marked decrease in CD4 expression, suggesting the selective recruitment of cells strongly expressing CD4 into syncytia. However, the incorporated CD4 was not detected in the syncytia, whereas the range of expression of CD28, ICAM-1, CXCR4 and CD3 was wider than that of unfused cells. Limited expression of CD4 in the bystander unfused population, as well as in the newly formed syncytia, would result in limitation of further viral entry and a failure to identify these cells, and it could partially contribute to functional impairment and a decrease in the number of CD4+ T cells in AIDS. Most of the syncytia were viable and expressed CD25 and IL-2 in response to activation by phorbol myristate acetate (PMA) and ionomicyn. Thus, syncytia populations harboring widely heterogeneous levels of receptors would constitute a potential source of anomalous immune function.
Archives of Medical Research | 2013
Paola Ballesteros-Zebadúa; Carlos Villarreal; Germinal Cocho; Leonor Huerta; José Luis Estrada
BACKGROUND AND AIMS HIV-1 viral load is used to monitor AIDS progression and effect of antiretroviral therapy (ART). Several reports have indicated that the HIV-1 viral load of infected individuals is lower in females than in males. There are no reports exploring this issue in the Mexican population. We analyzed the relationship between sex and viral load in Mexican patients differing in CD4 T-cell count, age and treatment status. METHODS A retrospective study was performed in 3949 male and 696 female HIV-1-infected individuals. Statistical distributions were compared using the Mann-Whitney U nonparametric test. RESULTS Among the antiretroviral-untreated group, females had a significantly lower viral load than males (0.52 female/male median viral load ratio, p = 0.008). When classified according to different ranges of CD4⁺ T cell counts, females had consistently lower viral loads than males, although statistical significance was achieved only for the group in the range of 201-350 (p = 0.014). Patients with the lowest CD4⁺ T-cell counts showed similar viral loads for both sexes. No differences were observed in the ART group. CONCLUSIONS This study demonstrates a baseline difference in viral load between male and female ART-untreated Mexican patients. The overall tendency indicating a lower viral load in females in the same ranges of CD4⁺ T-cell counts than males, suggests that the lower viral load in females is not indicative of a lower risk of developing AIDS. These observations suggest a significant influence of sex on viral dynamics and immune response despite variations in demographic factors.
Cellular Immunology | 2007
Guillermo Gómez-Icazbalceta; Leonor Huerta; L.E. Soto-Ramirez; Carlos Larralde
The effect of extracellular HIV Nef (exNef) protein on the induction of lytic activity and proliferation of CD8+T lymphocytes from 18 donors was studied. At 10 ng/ml, exNef-induced a 2- to 8-fold enhancement of basal lytic activity in cells from all donors in an allogeneic induction assay, whereas it was ineffective at 100ng/ml. The extent of enhancement was inversely correlated with the basal level of lytic activity without exNef. Only in combination with PHA did both exNef concentrations stimulate proliferation, and in a manner inversely related to the effect of PHA alone. Thus, concentrations of exNef commonly found in sera of HIV-infected patients were found to modulate the induction of lytic activity and proliferation of CD8+ T lymphocytes in vitro, to an extent strongly dependent on the quite variable responsiveness of each donor. These findings point to Nef as a potential agent for modulating CD8+ T cell function in pathogenesis and therapy.
Frontiers in Physiology | 2018
Mariana Esther Martinez-Sanchez; Leonor Huerta; Elena R. Alvarez-Buylla; Carlos Villarreal Lujan
Purpose: We put forward a theoretical and dynamical approach for the semi-quantitative analysis of CD4+ T cell differentiation, the process by which cells with different functions are derived from activated CD4+ T naïve lymphocytes in the presence of particular cytokine microenvironments. We explore the system-level mechanisms that underlie CD4+ T plasticity-the conversion of polarized cells to phenotypes different from those originally induced. Methods: In this paper, we extend a previous study based on a Boolean network to a continuous framework. The network includes transcription factors, signaling pathways, as well as autocrine and exogenous cytokines, with interaction rules derived using fuzzy logic. Results: This approach allows us to assess the effect of relative differences in the concentrations and combinations of exogenous and endogenous cytokines, as well as of the expression levels of diverse transcription factors. We found either abrupt or gradual differentiation patterns between observed phenotypes depending on critical concentrations of single or multiple environmental cytokines. Plastic changes induced by environmental cytokines were observed in conditions of partial phenotype polarization in the T helper 1 to T helper 2 transition. On the other hand, the T helper 17 to induced regulatory T-cells transition was highly dependent on cytokine concentrations, with TGFβ playing a prime role. Conclusion: The present approach is useful to further understand the system-level mechanisms underlying observed patterns of CD4+ T differentiation and response to changing immunological challenges.
Experimental Cell Research | 2017
David Martínez-Méndez; Evelyn Rivera-Toledo; Enrique Ortega; Ileana Licona-Limón; Leonor Huerta
ABSTRACT Enveloped viruses induce cell‐cell fusion when infected cells expressing viral envelope proteins interact with target cells, or through the contact of cell‐free viral particles with adjoining target cells. CD4+ T lymphocytes and cells from the monocyte‐macrophage lineage express receptors for HIV envelope protein. We have previously reported that lymphoid Jurkat T cells expressing the HIV‐1 envelope protein (Env) can fuse with THP‐1 monocytic cells, forming heterokaryons with a predominantly myeloid phenotype. This study shows that the expression of monocytic markers in heterokaryons is stable, whereas the expression of lymphoid markers is mostly lost. Like THP‐1 cells, heterokaryons exhibited Fc&ggr;R‐dependent phagocytic activity and showed an enhanced expression of the activation marker ICAM‐1 upon stimulation with PMA. In addition, heterokaryons showed morphological changes compatible with maturation, and high expression of the differentiation marker CD11b in the absence of differentiation‐inducing agents. No morphological change nor increase in CD11b expression were observed when an HIV‐fusion inhibitor blocked fusion, or when THP‐1 cells were cocultured with Jurkat cells expressing a non‐fusogenic Env protein, showing that differentiation was not induced merely by cell‐cell interaction but required cell‐cell fusion. Inhibition of TLR2/TLR4 signaling by a TIRAP inhibitor greatly reduced the expression of CD11b in heterokaryons. Thus, lymphocyte‐monocyte heterokaryons induced by HIV‐1 Env are stable and functional, and fusion prompts a phenotype characteristic of activated monocytes via intracellular TLR2/TLR4 signaling. HIGHLIGHTSJurkat T cells expressing the HIV‐1 envelope fuse with THP‐1 monocytes.Heterokaryons display a dominant myeloid phenotype and monocyte function.Heterokaryons exhibit activation features in the absence of activation agents.Activation is not due to cell‐cell interaction but requires cell‐cell fusion.The activated monocyte‐like phenotype is mediated by TLR2/TLR4 signaling.
Virology Journal | 2016
Elena Pacheco-Martínez; Evangelina Figueroa-Medina; Carlos Villarreal; Germinal Cocho; José L. Medina-Franco; Oscar Méndez-Lucio; Leonor Huerta
BackgroundThe interaction of the envelope glycoprotein of HIV-1 (gp120/gp41) with coreceptor molecules has important implications for specific cellular targeting and pathogenesis. Experimental and theoretical evidences have shown a role for gp41 in coreceptor tropism, although there is no consensus about the positions involved. Here we analyze the association of physicochemical properties of gp41 amino acid residues with viral tropism (X4, R5, and R5X4) using a large set of HIV-1 sequences. Under the assumption that conserved regions define the complex structural features essential for protein function, we focused our search only on amino acids in the gp41 variable regions.MethodsGp41 amino acid sequences of 2823 HIV-1 strains from all clades with known coreceptor tropism were retrieved from Los Alamos HIV Database. Consensus sequences were constructed for homologous sequences (those obtained from the same patient and having the same tropism) in order to avoid bias due to sequence overrepresentation, and the variability (entropy) per site was determined. Comparisons of hydropathy index (HI) and charge (Q) of amino acid residues at highly variable positions between coreceptor groups were performed using two non-parametrical tests and Benjamini-Hochberg correction. Pearson’s correlation analysis was performed to determine covariance of HI and Q values.ResultsCalculation of variability per site rendered 58 highly variable amino acid positions. Of these, statistical analysis rendered significantly different HI or Q only for the R5 vs. R5X4 comparison at twelve positions: 535, 602, 619, 636, 640, 641, 658, 662, 667, 723, 756 and 841. The largest differences in particular amino acid frequencies between coreceptor groups were found at 619, 636, 640, 641, 662, 723 and 756. A hydrophobic tendency of residues 619, 640, 641, 723 and 756, along with a hydrophilic/charged tendency at residues 636 and 662 was observed in R5X4 with respect to R5 sequences. HI of position 640 covariated with that of 602, 619, 636, 662, and 756.ConclusionsVariability and significant correlations of physicochemical properties with viral phenotype suggest that substitutions at residues in the loop (602 and 619), the HR2 (636, 640, 641, 662), and the C-terminal tail (723, 756) of gp41 may contribute to phenotype of R5X4 strains.
Methods of Molecular Biology | 2015
Guillermo Gómez-Icazbalceta; Mirna Berenice Ruiz-Rivera; Edmundo Lamoyi; Leonor Huerta
Cell-cell fusion is a frequent event in nature leading to modification of cell fate. In this chapter, we describe a flow cytometric procedure for the quantitative assessment of in vitro cell-cell fusion events that allows the discrimination of fused from aggregated cells. The assay is based on the differential labeling of fusion partners with lipophilic fluorescent probes DiI (red) and DiO (green). Double fluorescent fused cells can be detected after coculturing by means of a flow cytometer equipped with a 488 nm laser. Fusion events can be distinguished from cell aggregates by the enhancement of the DiI red fluorescence intensity due to resonance energy transfer between the two probes occurring in the fused but not in the aggregated cell population.
Experimental and Molecular Pathology | 2011
Evelyn Rivera-Toledo; Leonor Huerta; Carlos Larralde; Edmundo Lamoyi
Cells infected with the human immunodeficiency virus (HIV) can fuse with CD4(+) cells leading to the formation of multinucleated cells. The presence of multinucleated cells infected with HIV in tissues of patients has been documented, although their cellular composition and role in AIDS pathogenesis is still under study. Here, we present evidence of in vitro heterotypic lymphocyte-monocyte fusion in cocultures of lymphocytic Jurkat T cells expressing the HIV-1 gp120/gp41 glycoproteins (Env) and CD4(+) monocytic THP-1 cells. Using a previously characterized method that involves differential labeling of fusion partners with fluorescent probes and flow cytometry analysis after coculture, up to 20% of double fluorescent cells were detected in 48h. This double fluorescent cell population was produced by heterotypic lymphocyte-monocyte fusion as it was not observed when Jurkat T cells expressing a mutant non-fusogenic Env protein were used. Heterokaryon formation was inhibited by an anti-CD4 monoclonal antibody and the HIV-fusion inhibitor peptide T-20. About 68% of heterokaryons remained alive and non-apoptotic after 2days of coculture. In heterokaryons, CD4 was barely detectable and the expression of the CD3 and CD28 lymphoid markers was greatly reduced, whereas the expression of CD32 and the intracellular antigen CD68, both markers of monocytic cells, remained unchanged. In contrast with unfused T cells, heterokaryons only expressed very low levels of the lymphoid activation marker CD25 following treatment with PMA plus ionomycin. These studies point to the possible generation of lymphocyte-monocyte heterokaryons with a myeloid phenotype during HIV infection, with unknown consequences for AIDS pathogenesis.
bioRxiv | 2017
Mariana Esther Martinez-Sanchez; Leonor Huerta; Elena R. Alvarez-Buylla; Carlos Villarreal Lujan
Diverse cellular polarization states with different phenotypes and functions are derived from the differentiation of activated CD4+ T naïve lymphocytes in the presence of particular cytokines. In addition, conversion of polarized cells to phenotypes different from that originally induced has been documented, highlighting the capacity of the immune response for adaptation to changing circumstances. In a recent study, we proposed a minimal Boolean regulatory network of CD4+ T differentiation that incorporates transcription factors, signaling pathways, and autocrine and exogenous cytokines. The qualitative model effectively reproduced the main polarized phenotypes of CD4+ T cells and several of the plasticity events reported in the literature. Yet, the amount and the expression of cytokines relative to expression of other factors influence CD4+ T cell transitions. In this paper, we have extended the Boolean network to a continuous model that allows us to assess the effect of quantitative differences in the concentrations and combinations of exogenous and endogenous cytokines, as well as diverse levels of transcription factors expression, in order to assess the role of intracellular and extracellular components in CD4+ T differentiation and plasticity. Interestingly, the model predicts either abrupt or gradual differentiation patterns between observed phenotypes depending on critical concentrations of single or multiple environmental cytokines. Plastic changes induced by environmental cytokines were observed in conditions of partial phenotype polarization in the Th1/Th2 transition. On the other hand, the Th17/iTreg transition was highly dependent on cytokine concentrations in the environment. Thus, modeling shows how the concentration of exogenous factors, the degree of initial polarization, and cell heterogeneity, may determine the differentiation and plasticity capacity of CD4+ T cells. The model and results presented here are useful to further understand system-level mechanisms underlying observed patterns of CD4+ T differentiation and plasticity.