Leonor Rodríguez-Sinobas
Technical University of Madrid
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Leonor Rodríguez-Sinobas.
Water Resources Research | 2014
Chadi Sayde; Javier Benitez Buelga; Leonor Rodríguez-Sinobas; Laureine El Khoury; Marshall English; Nick van de Giesen; John S. Selker
The Actively Heated Fiber Optic (AHFO) method is shown to be capable of measuring soil water content several times per hour at 0.25 m spacing along cables of multiple kilometers in length. AHFO is based on distributed temperature sensing (DTS) observation of the heating and cooling of a buried fiber-optic cable resulting from an electrical impulse of energy delivered from the steel cable jacket. The results presented were collected from 750 m of cable buried in three 240 m colocated transects at 30, 60, and 90 cm depths in an agricultural field under center pivot irrigation. The calibration curve relating soil water content to the thermal response of the soil to a heat pulse of 10 W m−1 for 1 min duration was developed in the lab. This calibration was found applicable to the 30 and 60 cm depth cables, while the 90 cm depth cable illustrated the challenges presented by soil heterogeneity for this technique. This method was used to map with high resolution the variability of soil water content and fluxes induced by the nonuniformity of water application at the surface.
Journal of Irrigation and Drainage Engineering-asce | 2009
Leonor Rodríguez-Sinobas; María Gil; Luis Juana; Raúl Sánchez
The performance of drip irrigation and subsurface drip irrigation (SDI) laterals has been compared. Two emitter models (one compensating and the other noncompensating) were assessed. Field tests were carried out with a pair of laterals working at the same inlet pressure. A procedure was developed that recorded head pressures at both lateral extremes and inlet flow during irrigation. Both models showed similar behavior and soil properties affected their discharge. On the other hand, the performance of a field SDI unit of compensating emitters was characterized by measuring pressures at different points and inlet flow. Finally, the distribution of water and soil pressure in the laterals and the unit were predicted and irrigation uniformity and soil pressure variability were also determined. Predictions agreed reasonably well with the experimental observations. Thus, the methodology proposed could be used to support the decision making for the design and management of SDI systems.
Water Resources Research | 2016
Javier Benítez-Buelga; Leonor Rodríguez-Sinobas; Raúl Sánchez Calvo; María Gil-Rodríguez; Chadi Sayde; John S. Selker
The heat pulse probe method can be implemented with actively heated fiber optics (AHFO) to obtain distributed measurements of soil water content (θ) by using reported soil thermal responses measured by Distributed Temperature Sensing (DTS) and with a soil-specific calibration relationship. However, most reported applications have been calibrated to homogeneous soils in a laboratory, while inexpensive efficient in situ calibration procedures useful in heterogeneous soils are lacking. Here we employed the Hydrus 2-D/3-D code to define a soil-specific calibration curve. We define a 2-D geometry of the fiber optic cable and the surrounding soil media, and simulate heat pulses to capture the soil thermal response at different soil water contents. The model was validated in an irrigated field using DTS data from two locations along the FO deployment in which reference moisture sensors were installed. Results indicate that θ was measured with the model-based calibration with accuracy better than 0.022 m3 m−3.
Journal of Irrigation and Drainage Engineering-asce | 2009
Leonor Rodríguez-Sinobas; María Gil; Luis Juana; Raúl Sánchez
A complete methodology to predict water distribution in laterals and units of subsurface drip irrigation (SDI) is proposed. Two computer programs have been developed for the hydraulic characterization of SDI; one for laterals and the other for units. Emitter discharge was considered to depend on hydraulic variability, emitter’s manufacture and wear variation, and soil pressure variation. A new procedure to solve the hydraulic calculation of SDI looped network has been established. Moreover, spatial distribution of soil variability was estimated by a geostatistical modeling software that is coupled with the computer programs. Thus the evaluation and performance of laterals and units of SDI can be addressed by changing input variables such us: length and diameters of laterals; coefficients of emitter’s discharge equation; coefficient of variation of emitter’s manufacture and wear; local losses at the emitter insertion; inlet pressure; and soil hydraulic properties and its spatial variability. Finally, the m...
Journal of Fluids Engineering-transactions of The Asme | 2008
Raúl Sánchez; Luis Juana; Leonor Rodríguez-Sinobas
Cavitation effects in valves and other sudden transitions in water distribution systems are studied as their better understanding and quantification is needed for design and analysis purposes and for predicting and controlling their operation. Two dimensionless coefficients are used to characterize and verify local effects under cavitating flow conditions: the coefficient of local head losses and the minimum value of the cavitation number. In principle, both coefficients must be determined experimentally, but a semianalytical relationship between them is here proposed so that if one of them is known, its value can be used to estimate the corresponding value of the other one. This relationship is experimentally contrasted by measuring head losses and flow rates. It is also shown that cavitation number values, called cavitation limits, such as the critical cavitation limit, can be related in a simple but practical way with the mentioned minimum cavitation number and with a given pressure fluctuation level. Head losses under conditions of cavitation in sharp-edged orifices and valves are predicted for changes in upstream and downstream boundary conditions. An experimental determination of the coefficient of local head losses and the minimum value of the cavitation number is not dependent on the boundary conditions even if vapor cavity extends far enough to reach a downstream pressure tap. Also, the effects of cavitation and displacement of moving parts of valves on head losses can be split. A relatively simple formulation for local head losses including cavitation influence is presented. It can be incorporated to water distribution analysis models to improve their results when cavitation occurs. Likewise, it can also be used to elaborate information about validity limits of head losses in valves and other sudden transitions and to interpret the results of head loss tests.
Soil Science | 2012
Leonor Rodríguez-Sinobas; María Gil; Raúl Sánchez; Javier Benitez
Abstract Drip irrigation DI is considered one of the most efficient irrigation methods. Subsurface DI (SDI) is also a localized irrigation method, but laterals are deployed underneath the soil surface, leading to a higher potential efficiency. Among other factors, water distribution in SDI is affected by soil hydraulic properties, initial water content, emitter’s discharge, and irrigation frequency. However, complexity arising from soil water and profile characteristics means that these are often not properly considered in the design and management of these systems. In this article, irrigation uniformity in DI and SDI laterals was determined by field evaluations in a loamy soil at different inlet head pressures. Water application uniformity was very good for both irrigation methods, and differences between them were negligible. Thus, both methods may be suitable for this soil within the pressure range evaluated. The wetting pattern dimensions after infiltration for both methods were simulated with Hydrus-2D under field conditions. Wetting bulb size for DI was smaller than SDI; thus, it requires higher irrigation times to wet the same root zone. For the loamy soil, an emitter depth greater than 10 cm is advisable to prevent soil surface wetting for irrigation times higher than 30 min. Differences observed for 0.2- and 0.3-m depths were negligible. Simulations for different scenarios are depicted in graphs that might aid at the selection of proper design variables (emitter depth) and/or operation variables (inlet head and irrigation time) in the studied soil. Similar graphs could also be developed for other soils.
Journal of Irrigation and Drainage Engineering-asce | 2002
Luis Juana; Leonor Rodríguez-Sinobas; Alberto Losada
Irrigation Science | 2008
María Gil; Leonor Rodríguez-Sinobas; Luis Juana; Raúl Sánchez; Alberto Losada
Journal of Irrigation and Drainage Engineering-asce | 2002
Luis Juana; Leonor Rodríguez-Sinobas; Alberto Losada
Journal of Irrigation and Drainage Engineering-asce | 2004
Luis Juana; Alberto Losada; Leonor Rodríguez-Sinobas; Raúl Sánchez