Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leonor Saúde is active.

Publication


Featured researches published by Leonor Saúde.


Nature | 2000

Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation

Carl-Philipp Heisenberg; Masazumi Tada; Gerd-Jörg Rauch; Leonor Saúde; Miguel L. Concha; Robert Geisler; Derek L. Stemple; James H. C. Smith; Stephen W. Wilson

Vertebrate gastrulation involves the specification and coordinated movement of large populations of cells that give rise to the ectodermal, mesodermal and endodermal germ layers. Although many of the genes involved in the specification of cell identity during this process have been identified, little is known of the genes that coordinate cell movement. Here we show that the zebrafish silberblick (slb) locus encodes Wnt11 and that Slb/Wnt11 activity is required for cells to undergo correct convergent extension movements during gastrulation. In the absence of Slb/Wnt11 function, abnormal extension of axial tissue results in cyclopia and other midline defects in the head. The requirement for Slb/Wnt11 is cell non-autonomous, and our results indicate that the correct extension of axial tissue is at least partly dependent on medio-lateral cell intercalation in paraxial tissue. We also show that the slb phenotype is rescued by a truncated form of Dishevelled that does not signal through the canonical Wnt pathway, suggesting that, as in flies, Wnt signalling might mediate morphogenetic events through a divergent signal transduction cascade. Our results provide genetic and experimental evidence that Wnt activity in lateral tissues has a crucial role in driving the convergent extension movements underlying vertebrate gastrulation.


Current Biology | 2002

Lefty Antagonism of Squint Is Essential for Normal Gastrulation

Benjamin Feldman; Miguel L. Concha; Leonor Saúde; Michael J. Parsons; Richard J. Adams; Stephen W. Wilson; Derek L. Stemple

Activities of a variety of signaling proteins that regulate embryogenesis are limited by endogenous antagonists. The zebrafish Nodal-related ligands, Squint and Cyclops, and their antagonists, Lefty1 and Lefty2, belong to the TGFbeta-related protein superfamily, whose members have widespread biological activities. Among other activities, Nodals direct the formation of most mesendoderm. By inducing their own transcription and that of the Lefties, Nodal signals establish positive and negative autoregulatory loops. To investigate how these autoregulatory pathways regulate development, we depleted zebrafish embryos of Lefty1 and/or Lefty2 by using antisense morpholino oligonucleotides. Loss of Lefty1 causes aberrations during somitogenesis stages, including left-right patterning defects, whereas Lefty2 depletion has no obvious consequences. Depletion of both Lefty1 and Lefty2, by contrast, causes unchecked Nodal signaling, expansion of mesendoderm, and loss of ectoderm. The expansion of mesendoderm correlates with an extended period of rapid cellular internalization and a failure of deep-cell epiboly. The gastrulation defects of embryos depleted of Lefty1 and Lefty2 result from the deregulation of Squint signaling. In contrast, deregulation of Cyclops does not affect morphology or the transcription of Nodal target genes during gastrulation. Furthermore, we find that Cyclops is specifically required for the maintenance of lefty1 and lefty2 transcription.


Development | 2010

Notch signalling regulates left-right asymmetry through ciliary length control

Susana S. Lopes; Raquel Lourenço; Luís Pacheco; Nuno Moreno; Jill A. Kreiling; Leonor Saúde

The importance of cilia in embryonic development and adult physiology is emphasized by human ciliopathies. Despite its relevance, molecular signalling pathways behind cilia formation are poorly understood. We show that Notch signalling is a key pathway for cilia length control. In deltaD zebrafish mutants, cilia length is reduced in Kupffers vesicle and can be rescued by the ciliogenic factor foxj1a. Conversely, cilia length increases when Notch signalling is hyperactivated. Short cilia found in deltaD mutants reduce the fluid flow velocity inside Kupffers vesicle, thus compromising the asymmetric expression of the flow sensor charon. Notch signalling brings together ciliary length control and fluid flow hydrodynamics with transcriptional activation of laterality genes. In addition, our deltaD mutant analysis discloses an uncoupling between gut and heart laterality.


Nature Cell Biology | 2005

terra is a left–right asymmetry gene required for left–right synchronization of the segmentation clock

Leonor Saúde; Raquel Lourenço; Alexandre Gonçalves; Isabel Palmeirim

To establish the vertebrate body plan, it is fundamental to create left–right asymmetry in the lateral-plate mesoderm to correctly position the organs. However, it is also crucial to maintain symmetry between the left and the right sides of the presomitic mesoderm, ensuring the allocation of symmetrical body structures, such as the axial skeleton and skeletal muscles. Here, we show that terra is an early left-sided expressed gene that links left–right patterning with bilateral synchronization of the segmentation clock.


PLOS ONE | 2011

The Regenerative Capacity of the Zebrafish Caudal Fin Is Not Affected by Repeated Amputations

Ana Sofia Azevedo; Antonio Jacinto; Gilbert Weidinger; Leonor Saúde

Background The zebrafish has the capacity to regenerate many tissues and organs. The caudal fin is one of the most convenient tissues to approach experimentally due to its accessibility, simple structure and fast regeneration. In this work we investigate how the regenerative capacity is affected by recurrent fin amputations and by experimental manipulations that block regeneration. Methodology/Principal Findings We show that consecutive repeated amputations of zebrafish caudal fin do not reduce its regeneration capacity and do not compromise any of the successive regeneration steps: wound healing, blastema formation and regenerative outgrowth. Interfering with Wnt/ß-catenin signalling using heat-shock-mediated overexpression of Dickkopf1 completely blocks fin regeneration. Notably, if these fins were re-amputated at the non-inhibitory temperature, the regenerated caudal fin reached the original length, even after several rounds of consecutive Wnt/ß-catenin signalling inhibition and re-amputation. Conclusions/Significance We show that the caudal fin has an almost unlimited capacity to regenerate. Even after inhibition of regeneration caused by the loss of Wnt/ß-catenin signalling, a new amputation resets the regeneration capacity within the caudal fin, suggesting that blastema formation does not depend on a pool of stem/progenitor cells that require Wnt/ß-catenin signalling for their survival.


Development | 2012

The differentiation and movement of presomitic mesoderm progenitor cells are controlled by Mesogenin 1

Rita Fior; Adrienne A. Maxwell; Taylur P. Ma; Annalisa Vezzaro; Cecilia B. Moens; Sharon L. Amacher; Julian Lewis; Leonor Saúde

Somites are formed from the presomitic mesoderm (PSM) and give rise to the axial skeleton and skeletal muscles. The PSM is dynamic; somites are generated at the anterior end, while the posterior end is continually renewed with new cells entering from the tailbud progenitor region. Which genes control the conversion of tailbud progenitors into PSM and how is this process coordinated with cell movement? Using loss- and gain-of-function experiments and heat-shock transgenics we show in zebrafish that the transcription factor Mesogenin 1 (Msgn1), acting with Spadetail (Spt), has a central role. Msgn1 allows progression of the PSM differentiation program by switching off the progenitor maintenance genes ntl, wnt3a, wnt8 and fgf8 in the future PSM cells as they exit from the tailbud, and subsequently induces expression of PSM markers such as tbx24. msgn1 is itself positively regulated by Ntl/Wnt/Fgf, creating a negative-feedback loop that might be crucial to regulate homeostasis of the progenitor population until somitogenesis ends. Msgn1 drives not only the changes in gene expression in the nascent PSM cells but also the movements by which they stream out of the tailbud into the PSM. Loss of Msgn1 reduces the flux of cells out of the tailbud, producing smaller somites and an enlarged tailbud, and, by delaying exhaustion of the progenitor population, results in supernumerary tail somites. Through its combined effects on gene expression and cell movement, Msgn1 (with Spt) plays a key role both in genesis of the paraxial mesoderm and in maintenance of the progenitor population from which it derives.


PLOS ONE | 2010

Left-Right Function of dmrt2 Genes Is Not Conserved between Zebrafish and Mouse

Raquel Lourenço; Susana S. Lopes; Leonor Saúde

Background Members of the Dmrt family, generally associated with sex determination, were shown to be involved in several other functions during embryonic development. Dmrt2 has been studied in the context of zebrafish development where, due to a duplication event, two paralog genes dmrt2a and dmrt2b are present. Both zebrafish dmrt2a/terra and dmrt2b are important to regulate left-right patterning in the lateral plate mesoderm. In addition, dmrt2a/terra is necessary for symmetric somite formation while dmrt2b regulates somite differentiation impacting on slow muscle development. One dmrt2 gene is also expressed in the mouse embryo, where it is necessary for somite differentiation but with an impact on axial skeleton development. However, nothing was known about its role during left-right patterning in the lateral plate mesoderm or in the symmetric synchronization of somite formation. Methodology/Principal Findings Using a dmrt2 mutant mouse line, we show that this gene is not involved in symmetric somite formation and does not regulate the laterality pathway that controls left-right asymmetric organ positioning. We reveal that dmrt2a/terra is present in the zebrafish laterality organ, the Kupffers vesicle, while its homologue is excluded from the mouse equivalent structure, the node. On the basis of evolutionary sub-functionalization and neo-functionalization theories we discuss this absence of functional conservation. Conclusions/Significance Our results show that the role of dmrt2 gene is not conserved during zebrafish and mouse embryonic development.


PLOS ONE | 2012

In Vivo Cell and Tissue Dynamics Underlying Zebrafish Fin Fold Regeneration

Rita Mateus; Telmo Pereira; Sara Sousa; Joana Esteves de Lima; Susana Pascoal; Leonor Saúde; Antonio Jacinto

Background Zebrafish (Danio rerio) has a remarkable capacity to regenerate many organs and tissues. During larval stages the fin fold allows the possibility of performing long time-lapse imaging making this system very appealing to study the relationships between tissue movements, cell migration and proliferation necessary for the regeneration process. Results Through the combined use of transgenic fluorescently-labeled animals and confocal microscopy imaging, we characterized in vivo the complete fin fold regeneration process. We show, for the first time, that there is an increase in the global rate of epidermal growth as a response to tissue loss. Also enhanced significantly is cell proliferation, which upon amputation happens in a broad area concerning the amputation level and not in a blastema-restricted way. This reveals a striking difference with regard to the adult fin regeneration system. Finally, an accumulation of migratory, shape-changing fibroblasts occurs proximally to the wound area, resembling a blastemal-like structure, which may act as a signaling center for the regeneration process to proceed. Conclusions These findings provide a novel in vivo description of fundamental mechanisms occurring during the fin fold regeneration process, thereby contributing to a better knowledge of this regenerative system and to reveal variations in the epimorphic regeneration field.


The International Journal of Developmental Biology | 2012

Identification and expression analysis of two novel members of the Mesp family in zebrafish.

Stephen J. Cutty; Rita Fior; Pedro M. Henriques; Leonor Saúde; Fiona C. Wardle

Mesp proteins play crucial roles in the formation of heart, vasculature and somites during vertebrate embryogenesis. We have used phylogenetic and genomic analysis, combined with qRT-PCR and in situ hybridization, to characterize two novel additional mesp genes in zebrafish, mesp-ab and mesp-bb, and describe their expression pattern in wild type and segmentation mutants. Both mesp-ab and mesp-bb are expressed in early mesoderm with mesp-ab expression starting during late blastula stages and mesp-bb expression initiating later, at the end of gastrulation. During somitogenesis, both mesp genes are expressed dynamically in the anterior presomitic mesoderm. mesp-ab is expressed in presumptive somites S-I and S-II, while mesp-bb is detected in S-I, S-II and S0, with expression restricted to the rostral compartment of presumptive somites. We show that the segmentation clock program regulates expression of these newly identified zebrafish mesp genes in a similar manner to their ohnologs, mesp-aa and mesp-ba. We also present evidence that zebrafish, minnow and salmon retained these additional mesp genes after the teleost whole genome duplication, while medaka, stickleback, fugu and tetraodon did not. Finally we show that although expression and regulation of zebrafish mesp genes appears highly comparable, there is no conservation in non-coding regions with other teleosts. In this study we have completed the description of the Mesp family in zebrafish, which will enable correct genome annotation and facilitate further functional studies on the role of these proteins in zebrafish.


BMC Developmental Biology | 2012

An amputation resets positional information to a proximal identity in the regenerating zebrafish caudal fin

Ana Sofia Azevedo; Sara Sousa; Antonio Jacinto; Leonor Saúde

BackgroundZebrafish has emerged as a powerful model organism to study the process of regeneration. This teleost fish has the ability to regenerate various tissues and organs like the heart, spinal cord, retina and fins. In this study, we took advantage of the existence of an excellent morphological reference in the zebrafish caudal fin, the bony ray bifurcations, as a model to study positional information upon amputation. We investigated the existence of positional information for bifurcation formation by performing repeated amputations at different proximal-distal places along the fin.ResultsWe show that, while amputations performed at a long distance from the bifurcation do not change its final proximal-distal position in the regenerated fin, consecutive amputations done at 1 segment proximal to the bifurcation (near the bifurcation) induce a positional reset and progressively shift its position distally. Furthermore, we investigated the potential role of Shh and Fgf signalling pathways in the determination of the bifurcation position and observed that they do not seem to be involved in this process.ConclusionsOur results reveal that, an amputation near the bifurcation inhibits the formation of the regenerated bifurcation in the pre-amputation position, inducing a distalization of this structure. This shows that the positional memory for bony ray bifurcations depends on the proximal-distal level of the amputation.

Collaboration


Dive into the Leonor Saúde's collaboration.

Top Co-Authors

Avatar

Raquel Lourenço

Instituto de Medicina Molecular

View shared research outputs
Top Co-Authors

Avatar

Rita Fior

Instituto de Medicina Molecular

View shared research outputs
Top Co-Authors

Avatar

Derek L. Stemple

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Antonio Jacinto

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar

Susana S. Lopes

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar

Ana M. Cristovão

Instituto de Medicina Molecular

View shared research outputs
Top Co-Authors

Avatar

Ana Ribeiro

Instituto de Medicina Molecular

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susana Pascoal

Instituto de Medicina Molecular

View shared research outputs
Researchain Logo
Decentralizing Knowledge