Leroy Chew
University of Leeds
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Leroy Chew.
symposium on theoretical aspects of computer science | 2015
Olaf Beyersdorff; Leroy Chew; Mikoláš Janota
Proof systems for quantified Boolean formulas (QBFs) provide a theoretical underpinning for the performance of important QBF solvers. However, the proof complexity of these proof systems is currently not well understood and in particular lower bound techniques are missing. In this paper we exhibit a new and elegant proof technique for showing lower bounds in QBF proof systems based on strategy extraction. This technique provides a direct transfer of circuit lower bounds to lengths of proofs lower bounds. We use our method to show the hardness of a natural class of parity formulas for Q-resolution and universal Q-resolution. Variants of the formulas are hard for even stronger systems as long-distance Q-resolution and extensions. With a completely different lower bound argument we show the hardness of the prominent formulas of Kleine Buning et al. [34] for the strong expansion-based calculus IR-calc. Our lower bounds imply new exponential separations between two different types of resolution-based QBF calculi: proof systems for CDCL-based solvers (Q-resolution, long-distance Q-resolution) and proof systems for expansion-based solvers (forallExp+Res and its generalizations IR-calc and IRM-calc). The relations between proof systems from the two different classes were not known before.
mathematical foundations of computer science | 2014
Olaf Beyersdorff; Leroy Chew; Mikoláš Janota
Several calculi for quantified Boolean formulas (QBFs) exist, but relations between them are not yet fully understood. This paper defines a novel calculus, which is resolution-based and enables unification of the principal existing resolution-based QBF calculi, namely Q-resolution, long-distance Q-resolution and the expansion-based calculus ∀Exp+Res. All these calculi play an important role in QBF solving. This paper shows simulation results for the new calculus and some of its variants. Further, we demonstrate how to obtain winning strategies for the universal player from proofs in the calculus. We believe that this new proof system provides an underpinning necessary for formal analysis of modern QBF solvers.
ACM Transactions on Computational Logic | 2017
Olaf Beyersdorff; Leroy Chew; Meena Mahajan; Anil Shukla
The ground-breaking paper “Short Proofs Are Narrow -- Resolution Made Simple” by Ben-Sasson and Wigderson (J. ACM 2001) introduces what is today arguably the main technique to obtain resolution lower bounds: to show a lower bound for the width of proofs. Another important measure for resolution is space, and in their fundamental work, Atserias and Dalmau (J. Comput. Syst. Sci. 2008) show that lower bounds for space again can be obtained via lower bounds for width. In this article, we assess whether similar techniques are effective for resolution calculi for quantified Boolean formulas (QBFs). There are a number of different QBF resolution calculi like Q-resolution (the classical extension of propositional resolution to QBF) and the more recent calculi ∀Exp+Res and IR-calc. For these systems, a mixed picture emerges. Our main results show that the relations both between size and width and between space and width drastically fail in Q-resolution, even in its weaker tree-like version. On the other hand, we obtain positive results for the expansion-based resolution systems ∀Exp+Res and IR-calc, however, only in the weak tree-like models. Technically, our negative results rely on showing width lower bounds together with simultaneous upper bounds for size and space. For our positive results, we exhibit space and width-preserving simulations between QBF resolution calculi.
international colloquium on automata, languages and programming | 2015
Olaf Beyersdorff; Leroy Chew; Meena Mahajan; Anil Shukla
In sharp contrast to classical proof complexity we are currently short of lower bound techniques for QBF proof systems. We establish the feasible interpolation technique for all resolution-based QBF systems, whether modelling CDCL or expansion-based solving. This both provides the first general lower bound method for QBF calculi as well as largely extends the scope of classical feasible interpolation. We apply our technique to obtain new exponential lower bounds to all resolution-based QBF systems for a new class of QBF formulas based on the clique problem. Finally, we show how feasible interpolation relates to the recently established lower bound method based on strategy extraction [7].
theory and applications of satisfiability testing | 2016
Olaf Beyersdorff; Leroy Chew; Renate A. Schmidt; Martin Suda
We examine existing resolution systems for quantified Boolean formulas (QBF) and answer the question which of these calculi can be lifted to the more powerful Dependency QBFs (DQBF). An interesting picture emerges: While for QBF we have the strict chain of proof systems \(\textsf {Q-Res}< \textsf {IR-calc} < \textsf {IRM-calc} \), the situation is quite different in DQBF. The obvious adaptations of Q-Res and likewise universal resolution are too weak: they are not complete. The obvious adaptation of IR-calc has the right strength: it is sound and complete. IRM-calc is too strong: it is not sound any more, and the same applies to long-distance resolution. Conceptually, we use the relation of DQBF to effectively propositional logic (EPR) and explain our new DQBF calculus based on IR-calc as a subsystem of first-order resolution.
language and automata theory and applications | 2015
Olaf Beyersdorff; Leroy Chew; Karteek Sreenivasaiah
We provide a characterisation for the size of proofs in tree-like Q-Resolution by a Prover-Delayer game, which is inspired by a similar characterisation for the proof size in classical tree-like Resolution [10]. This gives the first successful transfer of one of the lower bound techniques for classical proof systems to QBF proof systems. We confirm our technique with two previously known hard examples. In particular, we give a proof of the hardness of the formulas of Kleine Buning et al. [20] for tree-like Q-Resolution.
international joint conference on automated reasoning | 2014
Olaf Beyersdorff; Leroy Chew
We provide the first comprehensive proof-complexity analysis of different proof systems for propositional circumscription. In particular, we investigate two sequent-style calculi: MLK defined by Olivetti [28] and CIRC introduced by Bonatti and Olivetti [8], and the tableaux calculus NTAB suggested by Niemela [26]. In our analysis we obtain exponential lower bounds for the proof size in NTAB and CIRC and show a polynomial simulation of CIRC by MLK. This yields a chain NTAB < p CIRC < p MLK of proof systems for circumscription of strictly increasing strength with respect to lengths of proofs.
Journal of Automated Reasoning | 2018
Olaf Beyersdorff; Joshua Blinkhorn; Leroy Chew; Renate A. Schmidt; Martin Suda
Dependency quantified Boolean formulas (DQBF) and QBF dependency schemes have been treated separately in the literature, even though both treatments extend QBF by replacing the linear order of the quantifier prefix with a partial order. We propose to merge the two, by reinterpreting a dependency scheme as a mapping from QBF into DQBF. Our approach offers a fresh insight on the nature of soundness in proof systems for QBF with dependency schemes, in which a natural property called ‘full exhibition’ is central. We apply our approach to QBF proof systems from two distinct paradigms, termed ‘universal reduction’ and ‘universal expansion’. We show that full exhibition is sufficient (but not necessary) for soundness in universal reduction systems for QBF with dependency schemes, whereas for expansion systems the same property characterises soundness exactly. We prove our results by investigating DQBF proof systems, and then employing our reinterpretation of dependency schemes. Finally, we show that the reflexive resolution path dependency scheme is fully exhibited, thereby proving a conjecture of Slivovsky.
foundations of software technology and theoretical computer science | 2016
Olaf Beyersdorff; Leroy Chew; Meena Mahajan; Anil Shukla
We define a cutting planes system CP+ForallRed for quantified Boolean formulas (QBF) and analyse the proof-theoretic strength of this new calculus. While in the propositional case, Cutting Planes is of intermediate strength between resolution and Frege, our findings here show that the situation in QBF is slightly more complex: while CP+ForallRed is again weaker than QBF Frege and stronger than the CDCL-based QBF resolution systems Q-Res and QU-Res, it turns out to be incomparable to even the weakest expansion-based QBF resolution system ForallExp+Res. Technically, our results establish the effectiveness of two lower bound techniques for CP+ForallRed: via strategy extraction and via monotone feasible interpolation.
Journal of Computer and System Sciences | 2017
Olaf Beyersdorff; Leroy Chew; Karteek Sreenivasaiah