Les J. Burke
University of Queensland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Les J. Burke.
EMBO Reports | 2005
Hanlim Moon; Galina N. Filippova; Dmitry Loukinov; Elena M. Pugacheva; Qi Chen; Sheryl Smith; Adam Munhall; Britta Grewe; Marek Bartkuhn; Rüdiger Arnold; Les J. Burke; Renate Renkawitz-Pohl; Rolf Ohlsson; Jumin Zhou; Rainer Renkawitz; Victor Lobanenkov
Eukaryotic transcriptional regulation often involves regulatory elements separated from the cognate genes by long distances, whereas appropriately positioned insulator or enhancer‐blocking elements shield promoters from illegitimate enhancer action. Four proteins have been identified in Drosophila mediating enhancer blocking—Su(Hw), Zw5, BEAF32 and GAGA factor. In vertebrates, the single protein CTCF, with 11 highly conserved zinc fingers, confers enhancer blocking in all known chromatin insulators. Here, we characterize an orthologous CTCF factor in Drosophila with a similar domain structure, binding site specificity and transcriptional repression activity as in vertebrates. In addition, we demonstrate that one of the insulators (Fab‐8) in the Drosophila Abdominal‐B locus mediates enhancer blocking by dCTCF. Therefore, the enhancer‐blocking protein CTCF and, most probably, the mechanism of enhancer blocking mediated by this remarkably versatile factor are conserved from Drosophila to humans.
The EMBO Journal | 2005
Les J. Burke; Ru Zhang; Marek Bartkuhn; Vijay K. Tiwari; Gholamreza Tavoosidana; Sreenivasulu Kurukuti; Christine Weth; Joerg Leers; Niels Galjart; Rolf Ohlsson; Rainer Renkawitz
Most of the transcription factors, RNA polymerases and enhancer binding factors are absent from condensed mitotic chromosomes. In contrast, epigenetic marks of active and inactive genes somehow survive mitosis, since the activity status from one cell generation to the next is maintained. For the zinc‐finger protein CTCF, a role in interpreting and propagating epigenetic states and in separating expression domains has been documented. To test whether such a domain structure is preserved during mitosis, we examined whether CTCF is bound to mitotic chromatin. Here we show that in contrast to other zinc‐finger proteins, CTCF indeed is bound to mitotic chromosomes. Mitotic binding is mediated by a portion of the zinc‐finger DNA binding domain and involves sequence specific binding to target sites. Furthermore, the chromatin loop organized by the CTCF‐bound, differentially methylated region at the Igf2/H19 locus can be detected in mitosis. In contrast, the enhancer/promoter loop of the same locus is lost in mitosis. This may provide a novel form of epigenetic memory during cell division.
The EMBO Journal | 2003
Marcus Lutz; Les J. Burke; Pascal Lefevre; Fiona A. Myers; Alan W. Thorne; Colyn Crane-Robinson; Constanze Bonifer; Galina N. Filippova; Victor Lobanenkov; Rainer Renkawitz
The highly conserved, ubiquitously expressed, zinc finger protein CTCF is involved in enhancer blocking, a mechanism crucial for shielding genes from illegitimate enhancer effects. Interestingly, CTCF‐binding sites are often flanked by thyroid hormone response elements (TREs), as at the chicken lysozyme upstream silencer. Here we identify a similar composite site positioned upstream of the human c‐myc gene. For both elements, we demonstrate that thyroid hormone abrogates enhancer blocking. Relief of enhancer blocking occurs even though CTCF remains bound to the lysozyme chromatin. Furthermore, chromatin immunoprecipitation analysis of the lysozyme upstream region revealed that histone H4 is acetylated at the CTCF‐binding site. Loss of enhancer blocking by the addition of T3 led to increased histone acetylation, not only at the CTCF site, but also at the enhancer and the promoter. Thus, when TREs are adjacent to CTCF‐binding sites, thyroid hormone can regulate enhancer blocking, thereby providing a new property for what was previously thought to be constitutive enhancer shielding by CTCF.
Journal of Biological Chemistry | 2005
Sathiya N. Ramakrishnan; Patrick Lau; Les J. Burke; George E. O. Muscat
Rev-erbβ is an orphan nuclear receptor that selectively blocks trans-activation mediated by the retinoic acid-related orphan receptor-α (RORα). RORα has been implicated in the regulation of high density lipoprotein cholesterol, lipid homeostasis, and inflammation. Reverbβ and RORα are expressed in similar tissues, including skeletal muscle; however, the pathophysiological function of Rev-erbβ has remained obscure. We hypothesize from the similar expression patterns, target genes, and overlapping cognate sequences of these nuclear receptors that Rev-erbβ regulates lipid metabolism in skeletal muscle. This lean tissue accounts for >30% of total body weight and 50% of energy expenditure. Moreover, this metabolically demanding tissue is a primary site of glucose disposal, fatty acid oxidation, and cholesterol efflux. Consequently, muscle has a significant role in insulin sensitivity, obesity, and the blood-lipid profile. We utilize ectopic expression in skeletal muscle cells to understand the regulatory role of Rev-erbβ in this major mass peripheral tissue. Exogenous expression of a dominant negative version of mouse Rev-erbβ decreases the expression of many genes involved in fatty acid/lipid absorption (including Cd36, and Fabp-3 and -4). Interestingly, we observed a robust induction (>15-fold) in mRNA expression of interleukin-6, an “exercise-induced myokine” that regulates energy expenditure and inflammation. Furthermore, we observed the dramatic repression (>20-fold) of myostatin mRNA, another myokine that is a negative regulator of muscle hypertrophy and hyperplasia that impacts on body fat accumulation. This study implicates Rev-erbβ in the control of lipid and energy homoeostasis in skeletal muscle. In conclusion, we speculate that selective modulators of Rev-erbβ may have therapeutic utility in the treatment of dyslipidemia and regulation of muscle growth.
Journal of Cell Science | 2006
Verónica Torrano; Joaquín de Navascués; Ru Zhang; Les J. Burke; Igor Chernukhin; Dawn Farrar; Javier León; Maria T. Berciano; Rainer Renkawitz; Elena Klenova; Miguel Lafarga; M. Dolores Delgado
Multiple functions have been reported for the transcription factor and candidate tumour suppressor, CTCF. Among others, they include regulation of cell growth, differentiation and apoptosis, enhancer-blocking activity and control of imprinted genes. CTCF is usually localized in the nucleus and its subcellular distribution during the cell cycle is dynamic; CTCF was found associated with mitotic chromosomes and the midbody, suggesting different roles for CTCF at different stages of the cell cycle. Here we report the nucleolar localization of CTCF in several experimental model systems. Translocation of CTCF from nucleoplasm to the nucleolus was observed after differentiation of K562 myeloid cells and induction of apoptosis in MCF7 breast cancer cells. CTCF was also found in the nucleoli in terminally differentiated rat trigeminal ganglion neurons. Thus our data show that nucleolar localization of CTCF is associated with growth arrest. Interestingly, the 180 kDa poly(ADP-ribosyl)ated isoform of CTCF was predominantly found in the nucleoli fractions. By transfecting different CTCF deletion constructs into cell lines of different origin we demonstrate that the central zinc-finger domain of CTCF is the region responsible for nucleolar targeting. Analysis of subnucleolar localization of CTCF revealed that it is distributed homogeneously in both dense fibrillar and granular components of the nucleolus, but is not associated with fibrillar centres. RNA polymerase I transcription and protein synthesis were required to sustain nucleolar localization of CTCF. Notably, the labelling of active transcription sites by in situ run-on assays demonstrated that CTCF inhibits nucleolar transcription through a poly(ADP-ribosyl)ation-dependent mechanism.
BMC Genomics | 2007
Stephen J. Bruce; Brooke Gardiner; Les J. Burke; Milena Gongora; Sean M. Grimmond; Andrew C. Perkins
BackgroundExpression profiling of embryonic stem (ES) cell differentiation in the presence of serum has been performed previously. It remains unclear if transcriptional activation is dependent on complex growth factor mixtures in serum or whether this process is intrinsic to ES cells once the stem cell program has been inactivated. The aims of this study were to determine the transcriptional programs associated with the stem cell state and to characterize mesoderm differentiation between serum and serum-free culture.ResultsES cells were differentiated as embryoid bodies in 10% FBS or serum-free media containing BMP4 (2 ng/ml), and expression profiled using 47 K Illumina(R) Sentrix arrays. Statistical methods were employed to define gene sets characteristic of stem cell, epiblast and primitive streak programs. Although the initial differentiation profile was similar between the two culture conditions, cardiac gene expression was inhibited in serum whereas blood gene expression was enhanced. Also, expression of many members of the Kruppel-like factor (KLF) family of transcription factors changed dramatically during the first few days of differentiation. KLF2 and KLF4 co-localized with OCT4 in a sub-nuclear compartment of ES cells, dynamic changes in KLF-DNA binding activities occurred upon differentiation, and strong bio-informatic evidence for direct regulation of many stem cell genes by KLFs was found.ConclusionDown regulation of stem cell genes and activation of epiblast/primitive streak genes is similar in serum and defined media, but subsequent mesoderm differentiation is strongly influenced by the composition of the media. In addition, KLF family members are likely to be important regulators of many stem cell genes.
Journal of Biological Chemistry | 2010
Yaowu He; Andreas Wortmann; Les J. Burke; Janet C. Reid; Mark N. Adams; Ibtissam Abdul-Jabbar; James P. Quigley; Richard Leduc; Daniel Kirchhofer; John D. Hooper
CUB-domain-containing protein 1 (CDCP1) is an integral membrane glycoprotein with potential as a marker and therapeutic target for a number of cancers. Here we examine mechanisms regulating cellular processing of CDCP1. By analyzing cell lines exclusively passaged non-enzymatically and through use of a panel of protease inhibitors, we demonstrate that full-length 135 kDa CDCP1 is post-translationally processed in a range of cell lines by a mechanism involving serine protease activity, generating a C-terminal 70-kDa fragment. Immunopurification and N-terminal sequencing of this cell-retained fragment and detailed mutagenesis, show that proteolytic processing of CDCP1 occurs at two sites, Arg-368 and Lys-369. We show that the serine protease matriptase is an efficient, but not essential, cellular processor of CDCP1 at Arg-368. Importantly, we also demonstrate that proteolysis induces tyrosine phosphorylation of 70-kDa CDCP1 and recruitment of Src and PKCδ to this fragment. In addition, Western blot and mass spectroscopy analyses show that an N-terminal 65-kDa CDCP1 ectodomain is shed intact from the cell surface. These data provide new insights into mechanisms regulating CDCP1 and suggest that the biological role of this protein and, potentially, its function in cancer, may be mediated by both 70-kDa cell retained and 65-kDa shed fragments, as well as the full-length 135-kDa protein.
The Journal of Steroid Biochemistry and Molecular Biology | 2002
Les J. Burke; R. Zhang; M. Lutz; Rainer Renkawitz
Thyroid hormones and thyroid hormone receptors (TRs) confer a fundamental regulation of critical genes involved in metabolism, differentiation, and development. A similar role is attributed to the highly conserved zinc-finger factor CTCF. Furthermore, a potential role in tumour suppression has been attributed to CTCF. In addition to promoter regulation, CTCF has also been shown to be involved in chromatin insulation or enhancer blocking. In several cases, binding sites for TR and for CTCF have been found next to each other. Functionally, these sites mediate synergistic repression or induction dependent on the type of binding site and on the presence or absence of thyroid hormone. Here we discuss functional similarities between TR and CTCF and their roles within these composite elements.
Nucleic Acids Research | 2000
Marcus Lutz; Les J. Burke; Guillermo Barreto; Frauke Goeman; Heiko Greb; Rüdiger Arnold; Holger Schultheiß; Alexander Brehm; Tony Kouzarides; Victor Lobanenkov; Rainer Renkawitz
Nucleic Acids Research | 1998
George E. O. Muscat; Les J. Burke; Michael Downes