Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Les Kaufman is active.

Publication


Featured researches published by Les Kaufman.


BioScience | 2003

Biodiversity and Fishery Sustainability in the Lake Victoria Basin: An Unexpected Marriage?

John Balirwa; Colin A. Chapman; Lauren J. Chapman; Ian G. Cowx; Kim Geheb; Les Kaufman; R. H. Lowe-McConnell; Ole Seehausen; Jan H. Wanink; Robin Welcomme; Frans Witte

Abstract Lake Victoria is Africas single most important source of inland fishery production. After it was initially fished down in the first half of the 20th century, Lake Victoria became home to a series of introduced food fishes, culminating in the eventual demographic dominance of the Nile perch, Lates niloticus. Simultaneously with the changes in fish stocks, Lake Victoria experienced dramatic changes in its ecology. The lake fishery during most of the 20th century was a multispecies fishery resting on a diverse lake ecosystem, in which native food fishes were targeted. The lake ended the century with a much more productive fishery, but one in which three species—two of them introduced—made up the majority of the catch. Although many fish stocks in Lake Victoria had declined before the expansion of the Nile perch population, a dramatic increase in the population size of Nile perch in the 1980s roughly coincided with the drastic decline or disappearance of many indigenous species. Now, two decades after the rise of Nile perch in Lake Victoria, this species has shown signs of being overfished, and some of the native species that were in retreat—or even thought extinct—are now reemerging. Data on the resurgence of the indigenous species suggest that heavy fishing of Nile perch may enhance biodiversity; this has spawned renewed interest in management options that promote both fishery sustainability and biodiversity conservation.


Brain Behavior and Evolution | 1997

Microhabitat use, trophic patterns, and the evolution of brain structure in African cichlids.

Robert Huber; Moira J. van Staaden; Les Kaufman; Karel F. Liem

The species assemblages of cichlids in the three largest African Great Lakes are among the richest concentrations of vertebrate species on earth. The faunas are broadly similar in terms of trophic diversity, species richness, rates of endemism, and taxonomic composition, yet they are historically independent of each other. Hence, they offer a true and unique evolutionary experiment to test hypotheses concerning the mutual dependencies of ecology and brain morphology. We examined the brains of 189 species of cichlids from the three large lakes: Victoria, Tanganyika, and Malawi. A first paper demonstrated that patterns of evolutionary change in cichlid brain morphology are similar across taxonomic boundaries as well as across the three lakes [van Staaden et al., 1995 ZACS 98: 165-178]. Here we report a close relationship between the relative sizes of various brain structures and variables related to the utilization of habitat and prey. Causality is difficult to assign in this context, nonetheless, prey size and agility, turbidity levels, depth, and substrate complexity are all highly predictive of variation in brain structure. Areas associated with primary sensory functions such as vision and taste relate significantly to differences in feeding habits. Turbidity and depth are closely associated with differences in eye size, and large eyes are associated with species that pick plankton from the water column. Piscivorous taxa and others that utilize motile prey are characterized by a well developed optic tectum and a large cerebellum compared to species that prey on molluscs or plants. Structures relating to taste are well developed in species feeding on benthos over muddy or sandy substrates. The data militated against the existence of compensatory changes in brain structure. Thus enhanced development of a particular function is generally not accompanied by a parallel reduction of structures related to other modalities. Although genetic and environmental influences during ontogeny of the brain cannot be isolated, this study provides a rich source of hypotheses concerning the way the nervous system functions under various environmental conditions and how it has responded to natural selection.


Ecology | 2002

HABITAT PATTERNS IN TROPICAL RAIN FORESTS: A COMPARISON OF 105 PLOTS IN NORTHWEST BORNEO

Matthew D. Potts; Peter S. Ashton; Les Kaufman; Joshua B. Plotkin

Understanding the maintenance of high tropical tree species diversity requires disentangling the effects of habitat vs. geographic distance. Using floristic, topographic, and soil nutrient data from 105 0.6-ha plots in mixed dipterocarp forest throughout Sarawak, Malaysian Borneo, we explore the degree to which floristic patterns are habitat-driven from local to landscape scales. We assess how the floristic influence of geographic distance vs. abiotic factors varies from local to regional scales. We employ several multivariate analytical techniques and perform a hierarchical clustering of the research plots using the Steinhaus index of floristic dissimilarity, as well as Mantel analyses on matrices of floristic, habitat, and geographic distance. These analyses indicate that floristic variation is more strongly correlated with habitat than with geographic distance on the regional scale. On the local- landscape to community scale, we find evidence of a resource threshold above which habitat effects weaken; that is, below the resource threshold floristic similarity between sites is dominated by habitat effects, while above the threshold floristic similarity between sites is dominated by geographic-distance effects. We also find evidence that topography and soil nutrients correlate in part independently with floristics. These results, together with previous studies in the Neotropics, emphasize that tree species distribution and community com- position are variously influenced by the interplay of both habitat and dispersal-driven effects.


Nature | 2009

Global patterns of speciation and diversity

M. A. M. de Aguiar; M. Baranger; Elizabeth M. Baptestini; Les Kaufman; Yaneer Bar-Yam

In recent years, strikingly consistent patterns of biodiversity have been identified over space, time, organism type and geographical region. A neutral theory (assuming no environmental selection or organismal interactions) has been shown to predict many patterns of ecological biodiversity. This theory is based on a mechanism by which new species arise similarly to point mutations in a population without sexual reproduction. Here we report the simulation of populations with sexual reproduction, mutation and dispersal. We found simulated time dependence of speciation rates, species–area relationships and species abundance distributions consistent with the behaviours found in nature. From our results, we predict steady speciation rates, more species in one-dimensional environments than two-dimensional environments, three scaling regimes of species–area relationships and lognormal distributions of species abundance with an excess of rare species and a tail that may be approximated by Fisher’s logarithmic series. These are consistent with dependences reported for, among others, global birds and flowering plants, marine invertebrate fossils, ray-finned fishes, British birds and moths, North American songbirds, mammal fossils from Kansas and Panamanian shrubs. Quantitative comparisons of specific cases are remarkably successful. Our biodiversity results provide additional evidence that species diversity arises without specific physical barriers. This is similar to heavy traffic flows, where traffic jams can form even without accidents or barriers.


PLOS ONE | 2012

Revealing the Appetite of the Marine Aquarium Fish Trade: The Volume and Biodiversity of Fish Imported into the United States

Andrew L. Rhyne; Michael F. Tlusty; Pamela J. Schofield; Les Kaufman; James A. Morris; Andrew W. Bruckner

The aquarium trade and other wildlife consumers are at a crossroads forced by threats from global climate change and other anthropogenic stressors that have weakened coastal ecosystems. While the wildlife trade may put additional stress on coral reefs, it brings income into impoverished parts of the world and may stimulate interest in marine conservation. To better understand the influence of the trade, we must first be able to quantify coral reef fauna moving through it. Herein, we discuss the lack of a data system for monitoring the wildlife aquarium trade and analyze problems that arise when trying to monitor the trade using a system not specifically designed for this purpose. To do this, we examined an entire year of import records of marine tropical fish entering the United States in detail, and discuss the relationship between trade volume, biodiversity and introduction of non-native marine fishes. Our analyses showed that biodiversity levels are higher than previous estimates. Additionally, more than half of government importation forms have numerical or other reporting discrepancies resulting in the overestimation of trade volumes by 27%. While some commonly imported species have been introduced into the coastal waters of the USA (as expected), we also found that some uncommon species in the trade have also been introduced. This is the first study of aquarium trade imports to compare commercial invoices to government forms and provides a means to, routinely and in real time, examine the biodiversity of the trade in coral reef wildlife species.


The Biological Bulletin | 2000

Endolithic fungi in reef-building corals (Order : Scleractinia) are common, cosmopolitan, and potentially pathogenic

Christopher J. Bentis; Les Kaufman; Stjepko Golubic

Reef-building corals appear to exist in dynamic equilibria with four principal partners: interconnected polyps of a colonial coelenterate, endosymbiotic dinoflagellate zooxanthellae residing in the host’s endoderm, endolithic algae that penetrate coral skeletons, and endolithic fungi that attack both endolithic algae and the polyps. Although reports of fungal and algal-like endoliths in corals date back almost 150 years (1) and evidence of a fossil history extends as far back as the Upper Devonian (;370 ma) (2), most attention has been paid to the structure (3), function (4, 5), and diversity (6) of the coral-zooxanthellae interactions, ignoring the endolithic members of the consortium. Recently, Le Campion-Alsumard et al. (1995) (7, 8) described an interrelationship between endolithic algae and fungi within the massive coral Porites lobata Dana 1846 (Poritidae), on Moorea island near Tahiti, French Polynesia. Fungi were also found to penetrate the most recently deposited skeletal material and to be associated with pearllike skeletal deposits formed by polyps of P. lobata in response to attack by their heterotrophic, endolithic symbionts. Here we extend these observations to the pocilloporid coral Pocillopora eydouxi and to the acroporid corals Acropora cytherea, Acropora humulis, and Montipora cf. studeri, collected at Johnston Atoll, central Pacific Ocean. Our observations suggest that direct coral-fungal interaction is widespread, not only geographically, but taxonomically as well. Thus, fungal endoliths, acting as opportunistic pathogens, may play a greater role in the ecology of coral reef systems than previously recognized. The oligophotic, siphonal green alga Ostreobium quekettii is ubiquitous in skeletons of live corals (9, 10). It is also common in other carbonate substrates, including dead shells and limestone, down to a depth of 300 m in clear waters of the Bahamas (11). Two other phototrophic organisms were reported from skeletons of live corals, the filamentous cyanobacterium Plectonema terebrans and conchocelis stages of bangiacean rhodophytes (12). Endolithic fungi in coral skeletons are equally common. They penetrate the corallum (euendolithic) and are often intermingled with endolithic algae, frequently parasitizing the latter (7). Fungi attack algal filaments by specialized hyphal branches, or haustoria, and often continue to grow inside algal filaments. Dense populations of algal and fungal endoliths have been associated with black-stained bands in specimens of P. lobata (13). Although skeletons of dead corals are bored by a variety of endolithic microorganisms, there has been no evidence that endoliths can penetrate the layer of tissue that covers living coral surfaces, leading to the conclusion that infestation by a limited number of specialized endoliths occurs early in the life of a coral, and that endolithic algae and fungi continue to grow in parallel with the accretion of the corallum (8). Most filaments of O. quekettii and endolithic fungi extend in the direction of the axes of skeletal growth. In P. lobata, borings were detected in newly deposited skeletal spines (pali), demonstrating that the endoliths are able to keep up with the rates of skeletal accretion (7, fig. 2). The pearl-like skeletal deposits are always associated with fungal attacks during the residence of polyps in actively growing calicies. The polyps encapsulate the advancing hypha into dense repair aragonite, forming a distinct skeletal structure referred to as a “cone” (7). The present study has two main objectives: to determine whether the relationship exhibited between P. lobata and endolithic fungi as described from the island of Moorea, in Received 7 July 1999; accepted 29 November 1999. *To whom correspondence should be addressed. E-mail: cbentis @bu.edu Reference: Biol. Bull. 198: 254–260. (April 2000)


PLOS ONE | 2012

Rhodolith Beds Are Major CaCO3 Bio-Factories in the Tropical South West Atlantic

Gilberto M. Amado-Filho; Rodrigo L. Moura; Alex Cardoso Bastos; Leonardo T. Salgado; Paulo Y. G. Sumida; Arthur Ziggiatti Güth; Ronaldo B. Francini-Filho; Guilherme H. Pereira-Filho; Douglas P. Abrantes; Poliana S. Brasileiro; Ricardo G. Bahia; Rachel Nunes Leal; Les Kaufman; Joanie Kleypas; Marcos Farina; Fabiano L. Thompson

Rhodoliths are nodules of non-geniculate coralline algae that occur in shallow waters (<150 m depth) subjected to episodic disturbance. Rhodolith beds stand with kelp beds, seagrass meadows, and coralline algal reefs as one of the worlds four largest macrophyte-dominated benthic communities. Geographic distribution of rhodolith beds is discontinuous, with large concentrations off Japan, Australia and the Gulf of California, as well as in the Mediterranean, North Atlantic, eastern Caribbean and Brazil. Although there are major gaps in terms of seabed habitat mapping, the largest rhodolith beds are purported to occur off Brazil, where these communities are recorded across a wide latitudinal range (2°N - 27°S). To quantify their extent, we carried out an inter-reefal seabed habitat survey on the Abrolhos Shelf (16°50′ - 19°45′S) off eastern Brazil, and confirmed the most expansive and contiguous rhodolith bed in the world, covering about 20,900 km2. Distribution, extent, composition and structure of this bed were assessed with side scan sonar, remotely operated vehicles, and SCUBA. The mean rate of CaCO3 production was estimated from in situ growth assays at 1.07 kg m−2 yr−1, with a total production rate of 0.025 Gt yr−1, comparable to those of the worlds largest biogenic CaCO3 deposits. These gigantic rhodolith beds, of areal extent equivalent to the Great Barrier Reef, Australia, are a critical, yet poorly understood component of the tropical South Atlantic Ocean. Based on the relatively high vulnerability of coralline algae to ocean acidification, these beds are likely to experience a profound restructuring in the coming decades.


Marine Pollution Bulletin | 2008

Diseases leading to accelerated decline of reef corals in the largest South Atlantic reef complex (Abrolhos Bank, eastern Brazil)

Ronaldo B. Francini-Filho; Rodrigo L. Moura; Fabiano L. Thompson; Rodrigo Reis; Les Kaufman; Ruy Kenji Papa de Kikuchi; Zelinda Margarida de Andrade Nery Leão

Although reef corals worldwide have sustained epizootics in recent years, no coral diseases have been observed in the southwestern Atlantic Ocean until now. Here we present an overview of the main types of diseases and their incidence in the largest and richest coral reefs in the South Atlantic (Abrolhos Bank, eastern Brazil). Qualitative observations since the 1980s and regular monitoring since 2001 indicate that coral diseases intensified only recently (2005-2007). Based on estimates of disease prevalence and progression rate, as well as on the growth rate of a major reef-building coral species (the Brazilian-endemic Mussismilia braziliensis), we predict that eastern Brazilian reefs will suffer a massive coral cover decline in the next 50 years, and that M. braziliensis will be nearly extinct in less than a century if the current rate of mortality due to disease is not reversed.


Conservation Biology | 2008

Endemism and regional color and genetic differences in five putatively cosmopolitan reef fishes.

Joshua Adam Drew; Gerald R. Allen; Les Kaufman; Paul H. Barber

Endemism is thought to be relatively rare in marine systems due to the lack of allopatric barriers and the potential for long-distance colonization via pelagic larval dispersal. Although many species of coral reef fishes exhibit regionally restricted color variants that are suggestive of regional endemism, such variation is typically ascribed to intraspecific variation. We examined the genetic structure in 5 putatively monospecific fishes from the Indo-West Pacific (Amphiprion melanopus, Chrysiptera talboti, and Pomacentrus moluccensis [Pomacentridae] and Cirrhilabrus punctatus, and Labroides dimidiatus [Labridae]) that express regional color variation unique to this area. Mitochondrial-control-region sequence analysis showed shallow to deep genetic divergence in all 5 species (sequence divergence 2-17%), with clades concordant with regional color variation. These results were partially supported by nuclear RAG2 data. An analysis of molecular variation (AMOVA) mirrored the phylogenetic results; Phi(ST) values ranged from 0.91 to 0.7, indicating high levels of geographic partitioning of genetic variation. Concordance of genetics and phenotype demonstrate the genetic uniqueness of southwestern Pacific color variants, indicating that these populations are at a minimum distinct evolutionarily significant units and perhaps distinct regionally endemic species. Our results indicate that the alpha biodiversity of the southwestern Pacific is likely underestimated even in well-studied groups, such as reef fishes, and that regional endemism may be more common in tropical marine systems than previously thought.


PLOS ONE | 2010

Changing Patterns of Microhabitat Utilization by the Threespot Damselfish, Stegastes planifrons, on Caribbean Reefs

William F. Precht; Richard B. Aronson; Ryan M. Moody; Les Kaufman

Background The threespot damselfish, Stegastes planifrons (Cuvier), is important in mediating interactions among corals, algae, and herbivores on Caribbean coral reefs. The preferred microhabitat of S. planifrons is thickets of the branching staghorn coral Acropora cervicornis. Within the past few decades, mass mortality of A. cervicornis from white-band disease and other factors has rendered this coral a minor ecological component throughout most of its range. Methodology/Principal Findings Survey data from Jamaica (heavily fished), Florida and the Bahamas (moderately fished), the Cayman Islands (lightly to moderately fished), and Belize (lightly fished) indicate that distributional patterns of S. planifrons are positively correlated with live coral cover and topographic complexity. Our results suggest that species-specific microhabitat preferences and the availability of topographically complex microhabitats are more important than the abundance of predatory fish as proximal controls on S. planifrons distribution and abundance. Conclusions/Significance The loss of the primary microhabitat of S. planifrons—A. cervicornis—has forced a shift in the distribution and recruitment of these damselfish onto remaining high-structured corals, especially the Montastraea annularis species complex, affecting coral mortality and algal dynamics throughout the Caribbean.

Collaboration


Dive into the Les Kaufman's collaboration.

Top Co-Authors

Avatar

Rodrigo L. Moura

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

James Lindholm

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leah B. Karrer

Global Environment Facility

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven Miller

University of North Carolina at Wilmington

View shared research outputs
Top Co-Authors

Avatar

Jesse G. Hastings

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew L. Rhyne

Roger Williams University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge