Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lesia Rodriguez is active.

Publication


Featured researches published by Lesia Rodriguez.


Plant Physiology | 2013

PYRABACTIN RESISTANCE1-LIKE8 Plays an Important Role for the Regulation of Abscisic Acid Signaling in Root

Regina Antoni; Miguel González-Guzmán; Lesia Rodriguez; Marta Peirats-Llobet; Gaston A. Pizzio; María Alejandra Fernández; Nancy De Winne; Geert De Jaeger; Daniela Dietrich; Malcom J. Bennett; Pedro L. Rodriguez

Summary: The abscisic acid receptor PYL8 plays an important role for regulation of root abscisic acid sensitivity, and abscisic acid-dependent inhibition of PP2Cs by PYR/PYLs is required for root hydrotropism. Abscisic acid (ABA) signaling plays a critical role in regulating root growth and root system architecture. ABA-mediated growth promotion and root tropic response under water stress are key responses for plant survival under limiting water conditions. In this work, we have explored the role of Arabidopsis (Arabidopsis thaliana) PYRABACTIN RESISTANCE1 (PYR1)/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS for root ABA signaling. As a result, we discovered that PYL8 plays a nonredundant role for the regulation of root ABA sensitivity. Unexpectedly, given the multigenic nature and partial functional redundancy observed in the PYR/PYL family, the single pyl8 mutant showed reduced sensitivity to ABA-mediated root growth inhibition. This effect was due to the lack of PYL8-mediated inhibition of several clade A phosphatases type 2C (PP2Cs), since PYL8 interacted in vivo with at least five PP2Cs, namely HYPERSENSITIVE TO ABA1 (HAB1), HAB2, ABA-INSENSITIVE1 (ABI1), ABI2, and PP2CA/ABA-HYPERSENSITIVE GERMINATION3 as revealed by tandem affinity purification and mass spectrometry proteomic approaches. We also discovered that PYR/PYL receptors and clade A PP2Cs are crucial for the hydrotropic response that takes place to guide root growth far from regions with low water potential. Thus, an ABA-hypersensitive pp2c quadruple mutant showed enhanced hydrotropism, whereas an ABA-insensitive sextuple pyr/pyl mutant showed reduced hydrotropic response, indicating that ABA-dependent inhibition of PP2Cs by PYR/PYLs is required for the proper perception of a moisture gradient.


The EMBO Journal | 2011

A thermodynamic switch modulates abscisic acid receptor sensitivity

Florine Dupeux; Julia Santiago; Katja Betz; Jamie Twycross; Sang-Youl Park; Lesia Rodriguez; Miguel González-Guzmán; Malene Ringkjøbing Jensen; Natalio Krasnogor; Martin Blackledge; Michael J. Holdsworth; Sean R. Cutler; Pedro L. Rodriguez; José A. Márquez

Abscisic acid (ABA) is a key hormone regulating plant growth, development and the response to biotic and abiotic stress. ABA binding to pyrabactin resistance (PYR)/PYR1‐like (PYL)/Regulatory Component of Abscisic acid Receptor (RCAR) intracellular receptors promotes the formation of stable complexes with certain protein phosphatases type 2C (PP2Cs), leading to the activation of ABA signalling. The PYR/PYL/RCAR family contains 14 genes in Arabidopsis and is currently the largest plant hormone receptor family known; however, it is unclear what functional differentiation exists among receptors. Here, we identify two distinct classes of receptors, dimeric and monomeric, with different intrinsic affinities for ABA and whose differential properties are determined by the oligomeric state of their apo forms. Moreover, we find a residue in PYR1, H60, that is variable between family members and plays a key role in determining oligomeric state. In silico modelling of the ABA activation pathway reveals that monomeric receptors have a competitive advantage for binding to ABA and PP2Cs. This work illustrates how receptor oligomerization can modulate hormonal responses and more generally, the sensitivity of a ligand‐dependent signalling system.


Plant Physiology | 2012

Selective Inhibition of Clade A Phosphatases Type 2C by PYR/PYL/RCAR Abscisic Acid Receptors

Regina Antoni; Miguel González-Guzmán; Lesia Rodriguez; Americo Rodrigues; Gaston A. Pizzio; Pedro L. Rodriguez

Clade A protein phosphatases type 2C (PP2Cs) are negative regulators of abscisic acid (ABA) signaling that are inhibited in an ABA-dependent manner by PYRABACTIN RESISTANCE1 (PYR1)/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS (RCAR) intracellular receptors. We provide genetic evidence that a previously uncharacterized member of this PP2C family in Arabidopsis (Arabidopsis thaliana), At5g59220, is a negative regulator of osmotic stress and ABA signaling and that this function was only apparent when double loss-of-function mutants with pp2ca-1/ahg3 were generated. At5g59220-green fluorescent protein and its close relative PP2CA-green fluorescent protein showed a predominant nuclear localization; however, hemagglutinin-tagged versions were also localized to cytosol and microsomal pellets. At5g59220 was selectively inhibited by some PYR/PYL ABA receptors, and close relatives of this PP2C, such as PP2CA/ABA-HYPERSENSITIVE GERMINATION3 (AHG3) and AHG1, showed a contrasting sensitivity to PYR/PYL inhibition. Interestingly, AHG1 was resistant to inhibition by the PYR/PYL receptors tested, which suggests that this seed-specific phosphatase is still able to regulate ABA signaling in the presence of ABA and PYR/PYL receptors and therefore to control the highly active ABA signaling pathway that operates during seed development. Moreover, the differential sensitivity of the phosphatases At5g59220 and PP2CA to inhibition by ABA receptors reveals a functional specialization of PYR/PYL ABA receptors to preferentially inhibit certain PP2Cs.


Plant Physiology | 2013

The PYL4 A194T mutant uncovers a key role of PYR1-LIKE4/PROTEIN PHOSPHATASE 2CA interaction for abscisic acid signaling and plant drought resistance.

Gaston A. Pizzio; Lesia Rodriguez; Regina Antoni; Miguel González-Guzmán; Cristina Yunta; Ebe Merilo; Hannes Kollist; Armando Albert; Pedro L. Rodriguez

Enhanced drought resistance through mutagenesis of an ABA receptor is associated with enhanced interaction with its protein phosphatase binding partner. Because abscisic acid (ABA) is recognized as the critical hormonal regulator of plant stress physiology, elucidating its signaling pathway has raised promise for application in agriculture, for instance through genetic engineering of ABA receptors. PYRABACTIN RESISTANCE1/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS ABA receptors interact with high affinity and inhibit clade A phosphatases type-2C (PP2Cs) in an ABA-dependent manner. We generated an allele library composed of 10,000 mutant clones of Arabidopsis (Arabidopsis thaliana) PYL4 and selected mutations that promoted ABA-independent interaction with PP2CA/ABA-HYPERSENSITIVE3. In vitro protein-protein interaction assays and size exclusion chromatography confirmed that PYL4A194T was able to form stable complexes with PP2CA in the absence of ABA, in contrast to PYL4. This interaction did not lead to significant inhibition of PP2CA in the absence of ABA; however, it improved ABA-dependent inhibition of PP2CA. As a result, 35S:PYL4A194T plants showed enhanced sensitivity to ABA-mediated inhibition of germination and seedling establishment compared with 35S:PYL4 plants. Additionally, at basal endogenous ABA levels, whole-rosette gas exchange measurements revealed reduced stomatal conductance and enhanced water use efficiency compared with nontransformed or 35S:PYL4 plants and partial up-regulation of two ABA-responsive genes. Finally, 35S:PYL4A194T plants showed enhanced drought and dehydration resistance compared with nontransformed or 35S:PYL4 plants. Thus, we describe a novel approach to enhance plant drought resistance through allele library generation and engineering of a PYL4 mutation that enhances interaction with PP2CA.


The Plant Cell | 2014

Targeted Degradation of Abscisic Acid Receptors Is Mediated by the Ubiquitin Ligase Substrate Adaptor DDA1 in Arabidopsis

María Luisa Irigoyen; Elisa Iniesto; Lesia Rodriguez; María Isabel Puga; Yuki Yanagawa; Elah Pick; Elizabeth Strickland; Javier Paz-Ares; Ning Wei; Geert De Jaeger; Pedro L. Rodriguez; Xing Wang Deng; Vicente Rubio

CULLIN4-RING E3 ubiquitin ligases target proteins for proteasomal degradation, thus regulating plant developmental and stress responses. The ubiquitin ligase substrate adaptor DDA1 binds to and promotes destabilization of the abscisic acid (ABA) receptor PYL8, thereby attenuating ABA-mediated responses through desensitization, and ABA counteracts the destabilization of PYL8. CULLIN4-RING E3 ubiquitin ligases (CRL4s) regulate key developmental and stress responses in eukaryotes. Studies in both animals and plants have led to the identification of many CRL4 targets as well as specific regulatory mechanisms that modulate their function. The latter involve COP10-DET1-DDB1 (CDD)–related complexes, which have been proposed to facilitate target recognition by CRL4, although the molecular basis for this activity remains largely unknown. Here, we provide evidence that Arabidopsis thaliana DET1-, DDB1-ASSOCIATED1 (DDA1), as part of the CDD complex, provides substrate specificity for CRL4 by interacting with ubiquitination targets. Thus, we show that DDA1 binds to the abscisic acid (ABA) receptor PYL8, as well as PYL4 and PYL9, in vivo and facilitates its proteasomal degradation. Accordingly, we found that DDA1 negatively regulates ABA-mediated developmental responses, including inhibition of seed germination, seedling establishment, and root growth. All other CDD components displayed a similar regulatory function, although they did not directly interact with PYL8. Interestingly, DDA1-mediated destabilization of PYL8 is counteracted by ABA, which protects PYL8 by limiting its polyubiquitination. Altogether, our data establish a function for DDA1 as a substrate receptor for CRL4-CDD complexes and uncover a mechanism for the desensitization of ABA signaling based on the regulation of ABA receptor stability.


Current Opinion in Plant Biology | 2011

News on ABA transport, protein degradation, and ABFs/WRKYs in ABA signaling.

Regina Antoni; Lesia Rodriguez; Miguel González-Guzmán; Gaston A. Pizzio; Pedro L. Rodriguez

The recent identification of abscisic acid (ABA) transporters provides an important insight into the delivery of ABA from the vascular system and its uptake by target cells. A putative connection with PYR/PYL receptors is envisaged, linking ABA uptake and intracellular perception by a fast and efficient mechanism. Downstream signaling of the core pathway involves regulation of ABA-responsive element binding factors (ABFs/AREBs) through phosphorylation, ubiquitination, and sumoylation in the case of ABI5. Several E3 ligases appear to regulate ABA signaling either positively or negatively, although relatively few targets are known yet. ABFs/AREBs are themselves subjected to transcriptional regulation, and some transcription factors (TFs) harboring the WRKY domain (WRKYs) appear to regulate their expression through W-box sequences present in the promoters of ABFs/AREBs.


Plant Physiology | 2011

Modulation of Abscisic Acid Signaling in Vivo by an Engineered Receptor-Insensitive Protein Phosphatase Type 2C Allele

Florine Dupeux; Regina Antoni; Katja Betz; Julia Santiago; Miguel González-Guzmán; Lesia Rodriguez; Silvia Rubio; Sang-Youl Park; Sean R. Cutler; Pedro L. Rodriguez; José A. Márquez

The plant hormone abscisic acid (ABA) plays a crucial role in the control of the stress response and the regulation of plant growth and development. ABA binding to PYRABACTIN RESISTANCE1 (PYR1)/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS intracellular receptors leads to inhibition of key negative regulators of ABA signaling, i.e. clade A protein phosphatases type 2C (PP2Cs) such as ABA-INSENSITIVE1 and HYPERSENSITIVE TO ABA1 (HAB1), causing the activation of the ABA signaling pathway. To gain further understanding on the mechanism of hormone perception, PP2C inhibition, and its implications for ABA signaling, we have performed a structural and functional analysis of the PYR1-ABA-HAB1 complex. Based on structural data, we generated a gain-of-function mutation in a critical residue of the phosphatase, hab1W385A, which abolished ABA-dependent receptor-mediated PP2C inhibition without impairing basal PP2C activity. As a result, hab1W385A caused constitutive inactivation of the protein kinase OST1 even in the presence of ABA and PYR/PYL proteins, in contrast to the receptor-sensitive HAB1, and therefore hab1W385A qualifies as a hypermorphic mutation. Expression of hab1W385A in Arabidopsis (Arabidopsis thaliana) plants leads to a strong, dominant ABA insensitivity, which demonstrates that this conserved tryptophan residue can be targeted for the generation of dominant clade A PP2C alleles. Moreover, our data highlight the critical role of molecular interactions mediated by tryptophan-385 equivalent residues for clade A PP2C function in vivo and the mechanism of ABA perception and signaling.


Plant Journal | 2014

The single-subunit RING-type E3 ubiquitin ligase RSL1 targets PYL4 and PYR1 ABA receptors in plasma membrane to modulate abscisic acid signaling

Eduardo Bueso; Lesia Rodriguez; Laura Lorenzo-Orts; Miguel González-Guzmán; Enric Sayas; Jesús Muñoz-Bertomeu; Carla Ibáñez; Ramón Serrano; Pedro L. Rodriguez

Membrane-delimited events play a crucial role for ABA signaling and PYR/PYL/RCAR ABA receptors, clade A PP2Cs and SnRK2/CPK kinases modulate the activity of different plasma membrane components involved in ABA action. Therefore, the turnover of PYR/PYL/RCARs in the proximity of plasma membrane might be a step that affects receptor function and downstream signaling. In this study we describe a single-subunit RING-type E3 ubiquitin ligase RSL1 that interacts with the PYL4 and PYR1 ABA receptors at the plasma membrane. Overexpression of RSL1 reduces ABA sensitivity and rsl1 RNAi lines that impair expression of several members of the RSL1/RFA gene family show enhanced sensitivity to ABA. RSL1 bears a C-terminal transmembrane domain that targets the E3 ligase to plasma membrane. Accordingly, bimolecular fluorescent complementation (BiFC) studies showed the RSL1-PYL4 and RSL1-PYR1 interaction is localized to plasma membrane. RSL1 promoted PYL4 and PYR1 degradation in vivo and mediated in vitro ubiquitylation of the receptors. Taken together, these results suggest ubiquitylation of ABA receptors at plasma membrane is a process that might affect their function via effect on their half-life, protein interactions or trafficking.


Journal of Experimental Botany | 2014

Tomato PYR/PYL/RCAR abscisic acid receptors show high expression in root, differential sensitivity to the abscisic acid agonist quinabactin, and the capability to enhance plant drought resistance.

Miguel González-Guzmán; Lesia Rodriguez; Laura Lorenzo-Orts; Clara Pons; Alejandro Sarrion-Perdigones; Maria A. Fernandez; Marta Peirats-Llobet; Javier Forment; María Moreno-Alvero; Sean R. Cutler; Armando Albert; Antonio Granell; Pedro L. Rodriguez

Summary Chemical and transgenic approaches can activate ABA signalling via crop PYR/PYL ABA receptors; quinabactin can selectively activate tomato ABA receptors, and overexpression of monomeric-type receptors confers enhanced plant drought resistance.


Plant Science | 2012

Structural insights into PYR/PYL/RCAR ABA receptors and PP2Cs

Julia Santiago; Florine Dupeux; Katja Betz; Regina Antoni; Miguel González-Guzmán; Lesia Rodriguez; José A. Márquez; Pedro L. Rodriguez

Abscisic acid (ABA) plays an essential function in plant physiology since it is required for biotic and abiotic stress responses as well as control of plant growth and development. A new family of soluble ABA receptors, named PYR/PYL/RCAR, has emerged as ABA sensors able to inhibit the activity of specific protein phosphatases type-2C (PP2Cs) in an ABA-dependent manner. The structural and functional mechanism by which ABA is perceived by these receptors and consequently leads to inhibition of the PP2Cs has been recently elucidated. The module PYR/PYL/RCAR-ABA-PP2C offers an elegant and unprecedented mechanism to control phosphorylation signaling cascades in a ligand-dependent manner. The knowledge of their three-dimensional structures paves the way to the design of ABA agonists able to modulate the plant stress response.

Collaboration


Dive into the Lesia Rodriguez's collaboration.

Top Co-Authors

Avatar

Miguel González-Guzmán

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Pedro L. Rodriguez

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Regina Antoni

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Marta Peirats-Llobet

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Armando Albert

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Gaston A. Pizzio

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Julia Santiago

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Sean R. Cutler

University of California

View shared research outputs
Top Co-Authors

Avatar

Borja Belda-Palazón

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Maira Diaz

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge