Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lesley A. Mitchenall is active.

Publication


Featured researches published by Lesley A. Mitchenall.


Science | 2009

A crystal structure of the bifunctional antibiotic simocyclinone D8, bound to DNA gyrase.

Marcus J. Edwards; Ruth H. Flatman; Lesley A. Mitchenall; Clare E. M. Stevenson; Tung B. K. Le; Thomas A. Clarke; Adam R. McKay; Hans-Peter Fiedler; Mark J. Buttner; David M. Lawson; Anthony Maxwell

Targeting DNA Gyrase DNA gyrase, an enzyme that unwinds double-stranded DNA, is essential in bacteria, but missing in humans, and is thus an important antibiotic target. DNA gyrase is inhibited by the well-known fluoroquinolines and aminocoumarins antibiotics, as well as by symocyclinones—bifunctional antibiotics comprising an aminocoumarin and a polyketide group. Surprisingly, symocyclinones, unlike aminocoumarin inhibitors, do not inhibit DNA gyrase GTPase activity, but instead inhibit binding to DNA. Now Edwards et al. (p. 1415) use biochemical and structural studies to show that the two functional groups of the antibiotic bind in separate pockets on the gyrase. Each group is a relatively weak inhibitor that together potently inhibit DNA binding. The molecular mechanism is revealed by which an antibiotic prevents DNA binding by a bacterial DNA gyrase. Simocyclinones are bifunctional antibiotics that inhibit bacterial DNA gyrase by preventing DNA binding to the enzyme. We report the crystal structure of the complex formed between the N-terminal domain of the Escherichia coli gyrase A subunit and simocyclinone D8, revealing two binding pockets that separately accommodate the aminocoumarin and polyketide moieties of the antibiotic. These are close to, but distinct from, the quinolone-binding site, consistent with our observations that several mutations in this region confer resistance to both agents. Biochemical studies show that the individual moieties of simocyclinone D8 are comparatively weak inhibitors of gyrase relative to the parent compound, but their combination generates a more potent inhibitor. Our results should facilitate the design of drug molecules that target these unexploited binding pockets.


Structure | 1998

Ligand size is a major determinant of specificity in periplasmic oxyanion-binding proteins: the 1.2 Å resolution crystal structure of Azotobacter vinelandii ModA

David M. Lawson; Clare Em Williams; Lesley A. Mitchenall

BACKGROUND . Periplasmic receptors constitute a diverse class of binding proteins that differ widely in size, sequence and ligand specificity. Nevertheless, almost all of them display a common beta/alpha folding motif and have similar tertiary structures consisting of two globular domains. The ligand is bound at the bottom of a deep cleft, which lies at the interface between these two domains. The oxyanion-binding proteins are notable in that they can discriminate between very similar ligands. RESULTS . Azotobacter vinelandii is unusual in that it possesses two periplasmic molybdate-binding proteins. The crystal structure of one of these with bound ligand has been determined at 1.2 A resolution. It superficially resembles the structure of sulphate-binding protein (SBP) from Salmonella typhimurium and uses a similar constellation of hydrogen-bonding interactions to bind its ligand. However, the detailed interactions are distinct from those of SBP and the more closely related molybdate-binding protein of Escherichia coli. CONCLUSIONS . Despite differences in the residues involved in binding, the volumes of the binding pockets in the A. vinelandii and E. coli molybdate-binding proteins are similar and are significantly larger than that of SBP. We conclude that the discrimination between molybdate and sulphate shown by these binding proteins is largely dependent upon small differences in the sizes of these two oxyanions.


Journal of Antimicrobial Chemotherapy | 2011

Inhibition of DNA gyrase and DNA topoisomerase IV of Staphylococcus aureus and Escherichia coli by aminocoumarin antibiotics

Silke Alt; Lesley A. Mitchenall; Anthony Maxwell; Lutz Heide

OBJECTIVES Aminocoumarin antibiotics are potent inhibitors of bacterial DNA gyrase. We investigated the inhibitory and antibacterial activity of naturally occurring aminocoumarin antibiotics and six structural analogues (novclobiocins) against DNA gyrase and DNA topoisomerase IV from Escherichia coli and Staphylococcus aureus as well as the effect of potassium and sodium glutamate on the activity of these enzymes. METHODS The inhibitory concentrations of the aminocoumarins were determined in gyrase supercoiling assays and topoisomerase IV decatenation assays. Both subunits of S. aureus topoisomerase IV were purified as His-Tag proteins in E. coli. The MIC was tested in vivo for the control organisms E. coli ATCC 25922 and S. aureus ATCC 29213. RESULTS DNA gyrase is the primary target in vitro of all investigated aminocoumarins. With the exception of simocyclinone D8, all other aminocoumarins inhibited S. aureus gyrase on average 6-fold more effectively than E. coli gyrase. Potassium glutamate is essential for the activity of S. aureus gyrase and increases the sensitivity of E. coli gyrase to aminocoumarins ≥ 10-fold. The antibacterial activity of the tested compounds mirrored their relative activities against topoisomerases. CONCLUSIONS The study provides insights about the substituents that are important for the inhibitory activity of aminocoumarins against the target enzymes, which will facilitate the rational design of improved antibiotics.


Journal of Biological Chemistry | 2010

Vibrio cholerae ParE2 poisons DNA gyrase via a mechanism distinct from other gyrase inhibitors

Jie Yuan; Yann G. J. Sterckx; Lesley A. Mitchenall; Anthony Maxwell; Remy Loris; Matthew K. Waldor

DNA gyrase is an essential bacterial enzyme required for the maintenance of chromosomal DNA topology. This enzyme is the target of several protein toxins encoded in toxin-antitoxin (TA) loci as well as of man-made antibiotics such as quinolones. The genome of Vibrio cholerae, the cause of cholera, contains three putative TA loci that exhibit modest similarity to the RK2 plasmid-borne parDE TA locus, which is thought to target gyrase although its mechanism of action is uncharacterized. Here we investigated the V. cholerae parDE2 locus. We found that this locus encodes a functional proteic TA pair that is active in Escherichia coli as well as V. cholerae. ParD2 co-purified with ParE2 and interacted with it directly. Unlike many other antitoxins, ParD2 could prevent but not reverse ParE2 toxicity. ParE2, like the unrelated F-encoded toxin CcdB and quinolones, targeted the GyrA subunit and stalled the DNA-gyrase cleavage complex. However, in contrast to other gyrase poisons, ParE2 toxicity required ATP, and it interfered with gyrase-dependent DNA supercoiling but not DNA relaxation. ParE2 did not bind GyrA fragments bound by CcdB and quinolones, and a set of strains resistant to a variety of known gyrase inhibitors all exhibited sensitivity to ParE2. Together, our findings suggest that ParE2 and presumably its many plasmid- and chromosome-encoded homologues inhibit gyrase in a different manner than previously described agents.


Journal of Biological Chemistry | 2013

The Naphthoquinone Diospyrin Is an Inhibitor of DNA Gyrase with a Novel Mechanism of Action

Shantanu Karkare; Terence T. H. Chung; Frédéric Collin; Lesley A. Mitchenall; Adam R. McKay; Sandra J. Greive; J.J.M. Meyer; Namrita Lall; Anthony Maxwell

Background: New antibacterial compounds are urgently needed; DNA gyrase is a well-validated target. Results: Diospyrin and other naphthoquinones inhibit DNA gyrase by binding to a novel site in the B subunit. Conclusion: Naphthoquinones are inhibitors of gyrase with a novel mechanism of action. Significance: Naphthoquinones have potential as antibacterial compounds against TB. Tuberculosis and other bacterial diseases represent a significant threat to human health. The DNA topoisomerases are excellent targets for chemotherapy, and DNA gyrase in particular is a well-validated target for antibacterial agents. Naphthoquinones (e.g. diospyrin and 7-methyljuglone) have been shown to have therapeutic potential, particularly against Mycobacterium tuberculosis. We have found that these compounds are inhibitors of the supercoiling reaction catalyzed by M. tuberculosis gyrase and other gyrases. Our evidence strongly suggests that the compounds bind to the N-terminal domain of GyrB, which contains the ATPase active site, but are not competitive inhibitors of the ATPase reaction. We propose that naphthoquinones bind to GyrB at a novel site close to the ATPase site. This novel mode of action could be exploited to develop new antibacterial agents.


Journal of Molecular Biology | 2009

How do type II topoisomerases use ATP hydrolysis to simplify DNA topology beyond equilibrium? Investigating the relaxation reaction of nonsupercoiling type II topoisomerases.

Tanya Stuchinskaya; Lesley A. Mitchenall; Allyn J. Schoeffler; Kevin D. Corbett; James M. Berger; Andrew D. Bates; Anthony Maxwell

DNA topoisomerases control the topology of DNA (e.g., the level of supercoiling) in all cells. Type IIA topoisomerases are ATP-dependent enzymes that have been shown to simplify the topology of their DNA substrates to a level beyond that expected at equilibrium (i.e., more relaxed than the product of relaxation by ATP-independent enzymes, such as type I topoisomerases, or a lower-than-equilibrium level of catenation). The mechanism of this effect is currently unknown, although several models have been suggested. We have analyzed the DNA relaxation reactions of type II topoisomerases to further explore this phenomenon. We find that all type IIA topoisomerases tested exhibit the effect to a similar degree and that it is not dependent on the supercoil-sensing C-terminal domains of the enzymes. As recently reported, the type IIB topoisomerase, topoisomerase VI (which is only distantly related to type IIA enzymes), does not exhibit topology simplification. We find that topology simplification is not significantly dependent on circle size in the range approximately 2-9 kbp and is not altered by reducing the free energy available from ATP hydrolysis by varying the ADP:ATP ratio. A direct test of one model (DNA tracking; i.e., sliding of a protein clamp along DNA to trap supercoils) suggests that this is unlikely to be the explanation for the effect. We conclude that geometric selection of DNA segments by the enzymes is likely to be a primary source of the effect, but that it is possible that other kinetic factors contribute. We also speculate whether topology simplification might simply be an evolutionary relic, with no adaptive significance.


Antimicrobial Agents and Chemotherapy | 2011

Structural and Biochemical Analysis of the Pentapeptide Repeat Protein EfsQnr, a Potent DNA Gyrase Inhibitor

Subray S. Hegde; Matthew W. Vetting; Lesley A. Mitchenall; Anthony Maxwell; John S. Blanchard

ABSTRACT The chromosomally encoded Qnr homolog protein from Enterococcus faecalis (EfsQnr), when expressed, confers to its host a decreased susceptibility to quinolones and consists mainly of tandem repeats, which is consistent with belonging to the pentapeptide repeat family of proteins (PRPs). EfsQnr was cloned with an N-terminal 6× His tag and purified to homogeneity. EfsQnr partially protected DNA gyrase from fluoroquinolone inhibition at concentrations as low as 20 nM. EfsQnr inhibited the ATP-dependent supercoiling activity of DNA gyrase with a 50% inhibitory concentration (IC50) of 1.2 μM, while no significant inhibition of ATP-independent relaxation activity was observed. EfsQnr was cytotoxic when overexpressed in Escherichia coli, resulting in the clumping of cells and a loss of viability. The X-ray crystal structure of EfsQnr was determined to 1.6-Å resolution. EfsQnr exhibits the right-handed quadrilateral beta-helical fold typical of PRPs, with features more analogous to MfpA (mycobacterium fluoroquinolone resistance pentapeptide) than to the PRPs commonly found in cyanobacteria.


Microbiology | 1996

The modE gene product mediates molybdenum-dependent expression of genes for the high-affinity molybdate transporter and modG in Azotobacter vinelandii

Nigel J. Mouncey; Lesley A. Mitchenall

The Azotobacter vinelandii mod locus, which is involved in high-affinity molybdate transport and the early event in Mo metabolism, consists of two divergently transcribed operons, modG and modEABC. modA, modB and modC encode the components of the high-affinity molybdate transporter, and modG encodes a Mo-binding protein. High concentrations of Mo repressed transcription of both operons. The modEABC operon was also repressed by tungstate and to a lesser extent by vanadate. modE, the first gene in the modEABC operon, controlled the Mo-dependent transcription of both operons. It was not involved in the metal regulation of alternative nitrogenase gene expression. Although a modE mutant constitutively expressed genes encoding the molybdate transporter, it had a reduced rate of Mo accumulation.


Antimicrobial Agents and Chemotherapy | 2010

Mapping Simocyclinone D8 Interaction with DNA Gyrase: Evidence for a New Binding Site on GyrB

C. Sissi; E. Vazquez; A. Chemello; Lesley A. Mitchenall; Anthony Maxwell; Manlio Palumbo

ABSTRACT Simocyclinone D8, a coumarin derivative isolated from Streptomyces antibioticus Tü 6040, represents an interesting new antiproliferative agent. It was originally suggested that this drug recognizes the GyrA subunit and interferes with the gyrase catalytic cycle by preventing its binding to DNA. To further characterize the mode of action of this antibiotic, we investigated its binding to the reconstituted DNA gyrase (A2B2) as well as to its GyrA and GyrB subunits and the individual domains of these proteins, by performing protein melting and proteolytic digestion studies as well as inhibition assays. Two binding sites were identified, one (anticipated) in the N-terminal domain of GyrA (GyrA59) and the other (unexpected) at the C-terminal domain of GyrB (GyrB47). Stabilization of the A subunit appears to be considerably more effective than stabilization of the B subunit. Our data suggest that these two distinct sites could cooperate in the reconstituted enzyme.


Nucleic Acids Research | 2011

Use of divalent metal ions in the DNA cleavage reaction of topoisomerase IV

Steven L. Pitts; Grace F. Liou; Lesley A. Mitchenall; Alex B. Burgin; Anthony Maxwell; Keir C. Neuman; Neil Osheroff

It has long been known that type II topoisomerases require divalent metal ions in order to cleave DNA. Kinetic, mutagenesis and structural studies indicate that the eukaryotic enzymes utilize a novel variant of the canonical two-metal-ion mechanism to promote DNA scission. However, the role of metal ions in the cleavage reaction mediated by bacterial type II enzymes has been controversial. Therefore, to resolve this critical issue, this study characterized the DNA cleavage reaction of Escherichia coli topoisomerase IV. We utilized a series of divalent metal ions with varying thiophilicities in conjunction with oligonucleotides that replaced bridging and non-bridging oxygen atoms at (and near) the scissile bond with sulfur atoms. DNA scission was enhanced when thiophilic metal ions were used with substrates that contained bridging sulfur atoms. In addition, the metal-ion dependence of DNA cleavage was sigmoidal in nature, and rates and levels of DNA cleavage increased when metal ion mixtures were used in reactions. Based on these findings, we propose that topoisomerase IV cleaves DNA using a two-metal-ion mechanism in which one of the metal ions makes a critical interaction with the 3′-bridging atom of the scissile phosphate and facilitates DNA scission by the bacterial type II enzyme.

Collaboration


Dive into the Lesley A. Mitchenall's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam R. McKay

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge