Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lesley A. Stevens is active.

Publication


Featured researches published by Lesley A. Stevens.


Annals of Internal Medicine | 2006

Using Standardized Serum Creatinine Values in the Modification of Diet in Renal Disease Study Equation for Estimating Glomerular Filtration Rate

Andrew S. Levey; Josef Coresh; Tom Greene; Lesley A. Stevens; Yaping (Lucy) Zhang; Stephen Hendriksen; John W. Kusek; Frederick Van Lente

Context Guidelines recommend that laboratories estimate glomerular filtration rate (GFR) with equations that use serum creatinine level, age, sex, and ethnicity. Standardizing creatinine measurements across clinical laboratories should reduce variability in estimated GFR. Contribution Using standardized creatinine assays, the authors calibrated serum creatinine levels in 1628 patients whose GFR had been measured by urinary clearance of 125I-iothalamate. They used these data to derive new equations for estimating GFR and to measure their accuracy. The equations were inaccurate only when kidney function was near-normal. Cautions There was no independent sample of patients for measuring accuracy. Implications By using this equation and a standardized creatinine assay, different laboratories can report estimated GFR more uniformly and accurately. The Editors Chronic kidney disease is a recently recognized public health problem. Current guidelines define chronic kidney disease as kidney damage or a glomerular filtration rate (GFR) less than 60 mL/min per 1.73 m2 for 3 months or more, regardless of cause (13). Kidney damage is usually ascertained from markers, such as albuminuria. The GFR can be estimated from serum creatinine concentration and demographic and clinical variables, such as age, sex, ethnicity, and body size. The normal mean value for GFR in healthy young men and women is approximately 130 mL/min per 1.73 m2 and 120 mL/min per 1.73 m2, respectively, and declines by approximately 1 mL/min per 1.73 m2 per year after 40 years of age (4). To facilitate detection of chronic kidney disease, guidelines recommend that clinical laboratories compute and report estimated GFR by using estimating equations, such as equations derived from the Modification of Diet in Renal Disease (MDRD) Study (13, 510). The original MDRD Study equation was developed by using 1628 patients with predominantly nondiabetic kidney disease. It was based on 6 variables: age; sex; ethnicity; and serum levels of creatinine, urea, and albumin (11). Subsequently, a 4-variable equation consisting of age, sex, ethnicity, and serum creatinine levels was proposed to simplify clinical use (3, 12). This equation is now widely accepted, and many clinical laboratories are using it to report GFR estimates. Extensive evaluation of the MDRD Study equation shows good performance in populations with lower levels of GFR but variable performance in those with higher levels (1332). Variability among clinical laboratories in calibration of serum creatinine assays (33, 34) introduces error in GFR estimates, especially at high levels of GFR (35), and may account in part for the poorer performance in this range (13, 14, 16, 1821, 27, 30). The National Kidney Disease Education Program (NKDEP) has initiated a creatinine standardization program to improve and normalize serum creatinine results used in estimating equations (36). The MDRD Study equation has now been reexpressed for use with a standardized serum creatinine assay (37), allowing GFR estimates to be reported in clinical practice by using standardized serum creatinine and overcoming this limitation to the current use of GFR estimating equations. The purpose of this report is to describe the performance of the reexpressed 4-variable MDRD Study equation and compare it with the performance of the reexpressed 6-variable MDRD equation and the CockcroftGault equation (38), with particular attention to the level of GFR. This information should facilitate implementation of reporting and interpreting estimated GFR in clinical practice. Methods Laboratory Methods Urinary clearances of 125I-iothalamate after subcutaneous infusion were determined at clinical centers participating in the MDRD Study. Serum and urine 125I-iothalamate were assayed in a central laboratory. All serum creatinine values reported in this study are traceable to primary reference material at the National Institute of Standards and Technology (NIST), with assigned values based on isotope-dilution mass spectrometry. The serum creatinine samples from the MDRD Study were originally assayed from 1988 to 1994 in a central laboratory with the Beckman Synchron CX3 (Global Medical Instrumentation, Inc., Ramsey, Minnesota) by using a kinetic alkaline picrate method. Samples were reassayed in 2004 with the same instrument. The Beckman assay was calibrated to the Roche/Hitachi P module Creatinase Plus enzymatic assay (Roche Diagnostics, Basel, Switzerland), traceable to an isotope-dilution mass spectrometry assay at NIST (37, 39). On the basis of these results, the 4-variable and 6-variable MDRD Study equations were reexpressed for use with standardized serum creatinine assay. The CockcroftGault equation was not reexpressed because the original serum creatinine samples were not available for calibration to standardized serum creatinine assay. Derivation and Validation of the MDRD Study Equation The MDRD Study was a multicenter, randomized clinical trial of the effects of reduced dietary protein intake and strict blood pressure control on the progression of chronic kidney disease (40). The derivation of the MDRD Study equation has been described previously (11). Briefly, the equation was developed from data from 1628 patients enrolled during the baseline period. The GFR was computed as urinary clearance of 125I-iothalamate. Creatinine clearance was computed from creatinine excretion in a 24-hour urine collection and a single measurement of serum creatinine. Glomerular filtration rate and creatinine clearance were expressed per 1.73 m2 of body surface area. Ethnicity was assigned by study personnel, without explicit criteria, probably by examination of skin color. The MDRD Study equation was developed by using multiple linear regression to determine a set of variables that jointly estimated GFR in a random sample of 1070 patients (development data set). The regressions were performed on log-transformed data to reduce variability in differences between estimated and measured GFR at higher levels. Several equations were developed, and the performance of these equations was compared in the remaining sample of 558 patients (validation data set). To improve the accuracy of the final equations, the regression coefficients derived from the development data set were updated on the basis of data from all 1628 patients (11). Estimation of GFR Glomerular filtration rate was estimated by using the following 4 equations: the reexpressed 4-variable MDRD Study equation (GFR= 175standardized Scr 1.154age0.2031.212 [if black]0.742 [if female]), the reexpressed 6-variable MDRD Study equation (GFR= 161.5standardized Scr 0.999age0.176SUN0.17albumin0.3181.18 [if black]0.762 [if female]), the CockcroftGault equation adjusted for body surface area (Ccr= [140age]weight0.85 [if female]1.73/72 standardized ScrBSA), and the CockcroftGault equation adjusted for body surface area and corrected for the bias in the MDRD Study sample (Ccr= 0.8[140age]weight0.85 [if female]1.73/72 standardized ScrBSA). In these equations, GFR and creatinine clearance (Ccr) are expressed as mL/min per 1.73 m2, serum creatinine and urea nitrogen (SUN) are expressed as mg/dL, albumin is expressed as g/dL, weight is expressed as kg, age is expressed as years, and body surface area (BSA) is expressed as m2. Correction for bias improves performance of the CockcroftGault equation because it adjusts for systematic differences between studies, such as differences in the measures of kidney function (GFR in the MDRD Study and creatinine clearance in the study by Cockcroft and Gault), the serum creatinine assays, and the study samples. Hence, the bias correction for the CockcroftGault equation provided here reexpresses that equation for the estimation of GFR for use with standardized creatinine in study samples similar to that in the MDRD Study. Measures of Performance Measures of performance include bias (median difference of measured minus estimated GFR and measured GFR) and percentage bias (percentage of bias divided by measured GFR), precision (interquartile range of the difference between estimated and measured GFR, and percentage of variance in log-measured GFR explained by the regression model [R2 values]), and accuracy (percentage of estimates within 30% of the measured values). In the overall data set, bias is expected to be close to 0 for equations derived in the MDRD Study database, including the 4-variable and 6-variable equations and the CockcroftGault equation adjusted for bias. The bootstrap method (based on percentiles, with 2000 bootstrap samples) was used to estimate 95% CIs for interquartile ranges and R2 values. Confidence intervals for the percentage of estimates within 30% of measured values were computed by using the normal approximation to the binomial or exact binomial probabilities, as appropriate. We also computed sensitivity, specificity, positive and negative predictive value of estimated GFR less than 60 mL/min per 1.73 m2, and receiver-operating characteristic (ROC) curves by using measured GFR less than 60 mL/min per 1.73 m2 as the criterion standard. Areas under the ROC curves were compared by using the method of DeLong and colleagues (41). R, version 2 (Free Software Foundation, Inc., Boston, Massachusetts), and SAS, version 9.1 (SAS Institute, Inc., Cary, North Carolina), were used for statistical analysis. We used the lowess function in R to plot smoothed functions in the figures. Role of the Funding Source The study was funded by grants from the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) as part of a cooperative agreement that gives the NIDDK substantial involvement in the design of the study and in the collection, analysis, and interpretation of the data. The NIDDK was not required to approve publication of the finished manuscript. The institutional review boards of all participating institutions approved the study. Results Clinical characteristics of


American Journal of Kidney Diseases | 2008

Estimating GFR Using Serum Cystatin C Alone and in Combination With Serum Creatinine: A Pooled Analysis of 3,418 Individuals With CKD

Lesley A. Stevens; Josef Coresh; Christopher H. Schmid; Harold I. Feldman; Marc Froissart; John W. Kusek; Jerome Rossert; Frederick Van Lente; Robert D. Bruce; Yaping (Lucy) Zhang; Tom Greene; Andrew S. Levey

BACKGROUND Serum cystatin C was proposed as a potential replacement for serum creatinine in glomerular filtration rate (GFR) estimation. We report the development and evaluation of GFR-estimating equations using serum cystatin C alone and serum cystatin C, serum creatinine, or both with demographic variables. STUDY DESIGN Test of diagnostic accuracy. SETTING & PARTICIPANTS Participants screened for 3 chronic kidney disease (CKD) studies in the United States (n = 2,980) and a clinical population in Paris, France (n = 438). REFERENCE TEST Measured GFR (mGFR). INDEX TEST Estimated GFR using the 4 new equations based on serum cystatin C alone, serum cystatin C, serum creatinine, or both with age, sex, and race. New equations were developed by using linear regression with log GFR as the outcome in two thirds of data from US studies. Internal validation was performed in the remaining one third of data from US CKD studies; external validation was performed in the Paris study. MEASUREMENTS GFR was measured by using urinary clearance of iodine-125-iothalamate in the US studies and chromium-51-EDTA in the Paris study. Serum cystatin C was measured by using Dade-Behring assay, standardized serum creatinine values were used. RESULTS Mean mGFR, serum creatinine, and serum cystatin C values were 48 mL/min/1.73 m(2) (5th to 95th percentile, 15 to 95), 2.1 mg/dL, and 1.8 mg/L, respectively. For the new equations, coefficients for age, sex, and race were significant in the equation with serum cystatin C, but 2- to 4-fold smaller than in the equation with serum creatinine. Measures of performance in new equations were consistent across the development and internal and external validation data sets. Percentages of estimated GFR within 30% of mGFR for equations based on serum cystatin C alone, serum cystatin C, serum creatinine, or both levels with age, sex, and race were 81%, 83%, 85%, and 89%, respectively. The equation using serum cystatin C level alone yields estimates with small biases in age, sex, and race subgroups, which are improved in equations including these variables. LIMITATIONS Study population composed mainly of patients with CKD. CONCLUSIONS Serum cystatin C level alone provides GFR estimates that are nearly as accurate as serum creatinine level adjusted for age, sex, and race, thus providing an alternative GFR estimate that is not linked to muscle mass. An equation including serum cystatin C level in combination with serum creatinine level, age, sex, and race provides the most accurate estimates.


Journal of The American Society of Nephrology | 2007

Evaluation of the Modification of Diet in Renal Disease Study Equation in a Large Diverse Population

Lesley A. Stevens; Josef Coresh; Harold I. Feldman; Tom Greene; James P. Lash; Robert G. Nelson; Mahboob Rahman; Amy E. Deysher; Yaping Lucy Zhang; Christopher H. Schmid; Andrew S. Levey

Glomerular filtration rate (GFR) estimates facilitate detection of chronic kidney disease. Performance of the Modification of Diet in Renal Disease (MDRD) Study equation varies substantially among populations. To describe the performance of the equation in a large, diverse population, estimated GFR (eGFR) was compared to measured GFR (mGFR) in a cross-sectional analysis of 5504 participants in 10 studies that included measurements of standardized serum creatinine and urinary clearance of iothalamate. At eGFR <60 ml/min per 1.73 m(2), the MDRD Study equation had lower bias and higher precision than at eGFR > or =60 ml/min per 1.73 m(2). The accuracy of the equation, measured by the percent of estimates that fell within 30% of mGFR, was similar for eGFR values above or below 60 ml/min per 1.73 m(2) (82% and 84%, respectively). Differences in performance among subgroups defined by age, sex, race, diabetes, transplant status, and body mass index were small when eGFR was <60 ml/min per 1.73 m(2). The MDRD Study equation therefore provides unbiased and reasonably accurate estimates across a wide range of subgroups when eGFR is <60 ml/min per 1.73 m(2). In individual patients, interpretation of GFR estimates near 60 ml/min per 1.73 m(2) should be interpreted with caution to avoid misclassification of chronic kidney disease in the context of the clinical setting.


American Journal of Kidney Diseases | 2010

Comparative Performance of the CKD Epidemiology Collaboration (CKD-EPI) and the Modification of Diet in Renal Disease (MDRD) Study Equations for Estimating GFR Levels Above 60 mL/min/1.73 m2

Lesley A. Stevens; Christopher H. Schmid; Tom Greene; Yaping (Lucy) Zhang; Gerald J. Beck; Marc Froissart; L. Lee Hamm; Julia B. Lewis; Michael Mauer; Gerjan Navis; Michael W. Steffes; Paul W. Eggers; Josef Coresh; Andrew S. Levey

BACKGROUND The Modification of Diet in Renal Disease (MDRD) Study equation underestimates measured glomerular filtration rate (GFR) at levels>60 mL/min/1.73 m2, with variable accuracy among subgroups; consequently, estimated GFR (eGFR)>or=60 mL/min/1.73 m2 is not reported by clinical laboratories. Here, performance of a more accurate GFR-estimating equation, the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation, is reported by level of GFR and clinical characteristics. STUDY DESIGN Test of diagnostic accuracy. SETTING & PARTICIPANTS Pooled data set of 3,896 people from 16 studies with measured GFR (not used for the development of either equation). Subgroups were defined by eGFR, age, sex, race, diabetes, prior solid-organ transplant, and body mass index. INDEX TESTS eGFR from the CKD-EPI and MDRD Study equations and standardized serum creatinine. REFERENCE TEST Measured GFR using urinary or plasma clearance of exogenous filtration markers. RESULTS Mean measured GFR was 68+/-36 (SD) mL/min/1.73 m2. For eGFR<30 mL/min/1.73 m2, both equations have similar bias (median difference compared with measured GFR). For eGFR of 30-59 mL/min/1.73 m2, bias was decreased from 4.9 to 2.1 mL/min/1.73 m2 (57% improvement). For eGFR of 60-89 mL/min/1.73 m2, bias was decreased from 11.9 to 4.2 mL/min/1.73 m2 (61% improvement). For eGFR of 90-119 mL/min/1.73 m2, bias was decreased from 10.0 to 1.9 mL/min/1.73 m2 (75% improvement). Similar or improved performance was noted for most subgroups with eGFR<90 mL/min/1.73 m2, other than body mass index<20 kg/m2, with greater variation noted for some subgroups with eGFR>or=90 mL/min/1.73 m2. LIMITATIONS Limited number of elderly people and racial and ethnic minorities with measured GFR. CONCLUSIONS The CKD-EPI equation is more accurate than the MDRD Study equation overall and across most subgroups. In contrast to the MDRD Study equation, eGFR>or=60 mL/min/1.73 m2 can be reported using the CKD-EPI equation.


Kidney International | 2009

Factors other than glomerular filtration rate affect serum cystatin C levels.

Lesley A. Stevens; Christopher H. Schmid; Tom Greene; Liang Li; Gerald J. Beck; Marshall M. Joffe; Marc Froissart; John W. Kusek; Yaping (Lucy) Zhang; Josef Coresh; Andrew S. Levey

Cystatin C is an endogenous glomerular filtration marker hence its serum level is affected by the glomerular filtration rate (GFR). To study what other factors might affect it blood level we performed a cross-sectional analysis of 3418 patients which included a pooled dataset of clinical trial participants and a clinical population with chronic kidney disease. The serum cystatin C and creatinine levels were related to clinical and biochemical parameters and errors-in-variables models were used to account for errors in GFR measurements. The GFR was measured as the urinary clearance of 125I-iothalamate and 51Cr-EDTA. Cystatin C was determined at a single laboratory while creatinine was standardized to reference methods and these were 2.1+/-1.1 mg/dL and 1.8+/-0.8 mg/L, respectively. After adjustment for GFR, cystatin C was 4.3% lower for every 20 years of age, 9.2% lower for female gender but only 1.9% lower in blacks. Diabetes was associated with 8.5% higher levels of cystatin C and 3.9% lower levels of creatinine. Higher C-reactive protein and white blood cell count and lower serum albumin were associated with higher levels of cystatin C and lower levels of creatinine. Adjustment for age, gender and race had a greater effect on the association of factors with creatinine than cystatin C. Hence, we found that cystatin C is affected by factors other than GFR which should be considered when the GFR is estimated using serum levels of cystatin C.


Journal of The American Society of Nephrology | 2009

Measured GFR as a Confirmatory Test for Estimated GFR

Lesley A. Stevens; Andrew S. Levey

Clinical assessment of kidney function is central to the practice of medicine. GFR is widely accepted as the best index of kidney function in health and disease, and accurate values are required for optimal decision making. Estimated GFR based on serum creatinine is now widely reported by clinical laboratories, and in most circumstances, estimated GFR is sufficient for clinical decision making. GFR estimates may be inaccurate in the non-steady state and in people in whom non-GFR determinants differ greatly from those in whom the estimating equation was developed. If GFR estimates are likely inaccurate or if decisions based on inaccurate estimates may have adverse consequences, a measured GFR is an important confirmatory test. Endogenous creatinine clearance is the most common method used to measure GFR in clinical practice but may be difficult to obtain or fraught with error. We review methods for GFR measurement using urinary and plasma clearance of exogenous filtration markers and focus on urinary clearance of iothalamate and plasma clearance of iohexol compared with inulin clearance. We suggest plasma clearance of nonradioactive markers be more widely implemented in clinical settings. Further research is necessary on the impact of the use of measured GFR as a confirmatory test.


Journal of The American Society of Nephrology | 2004

Calcium, Phosphate, and Parathyroid Hormone Levels in Combination and as a Function of Dialysis Duration Predict Mortality: Evidence for the Complexity of the Association between Mineral Metabolism and Outcomes

Lesley A. Stevens; Ognjenka Djurdjev; Savannah Cardew; E. C. Cameron; Adeera Levin

Current literature suggests associations between abnormal mineral metabolism (MM) to cardiovascular disease in dialysis populations, with conflicting results. MM physiology is complex; therefore, it was hypothesized that constellations of MM parameters, reflecting this complexity, would be predictive of mortality and that this effect would be modified by dialysis duration (DD). Prevalent dialysis patients in British Columbia, Canada, who had measurements of calcium (Ca), phosphate (Pi), and parathyroid hormone (iPTH) between January and March 2000 were followed prospectively until December 2002. Statistical analysis included Cox proportional hazard models with Ca, Pi, and iPTH alone and in combination as explanatory variables; analyses were stratified by DD. The 515 patients included in this analysis represent British Columbia and Canadian dialysis populations: 69% were on hemodialysis, mean age was 60 +/- 17 yr, 40% were female, and 34% had diabetes. Mean Ca and Pi values were 2.32 +/- 0.22 mmol/L and 1.68 +/- 0.59 mmol/L, respectively, and median iPTH was 15.8 pmol/L (25th to 75th percentile: 6.9 to 37.3 pmol/L). Serum Pi, after adjusting for demographic, dialysis type and adequacy, hemoglobin, and albumin, independently predicted mortality (risk ratio [RR], 1.56 per 1 mmol/L; 95% confidence interval [CI], 1.15 to 2.12; P = 0.004). When combinations of parameters were modeled (overall P = 0.003), the combinations of high serum Pi and Ca with high iPTH (RR, 3.71; 95% CI, 1.53 to 9.03; P = 0.004) and low iPTH (RR, 4.30; 95% CI, 2.01 to 9.22; P < 0.001) had highest risks for mortality as compared with the combination of high iPTH with normal serum Ca and Pi that had the lowest mortality and was used as index category. These effects varied across different strata of DD. This analysis demonstrates the importance of examining combinations of MM parameters as opposed to single variables alone and the effect of DD. In so doing, the complex interaction of time and MM can begin to be understand. Further exploration is required.


Kidney International | 2009

Original ArticleFactors other than glomerular filtration rate affect serum cystatin C levels

Lesley A. Stevens; Christopher H. Schmid; Tom Greene; Liang Li; Gerald J. Beck; Marshall M. Joffe; Marc Froissart; John W. Kusek; Yaping (Lucy) Zhang; Josef Coresh; Andrew S. Levey

Cystatin C is an endogenous glomerular filtration marker hence its serum level is affected by the glomerular filtration rate (GFR). To study what other factors might affect it blood level we performed a cross-sectional analysis of 3418 patients which included a pooled dataset of clinical trial participants and a clinical population with chronic kidney disease. The serum cystatin C and creatinine levels were related to clinical and biochemical parameters and errors-in-variables models were used to account for errors in GFR measurements. The GFR was measured as the urinary clearance of 125I-iothalamate and 51Cr-EDTA. Cystatin C was determined at a single laboratory while creatinine was standardized to reference methods and these were 2.1+/-1.1 mg/dL and 1.8+/-0.8 mg/L, respectively. After adjustment for GFR, cystatin C was 4.3% lower for every 20 years of age, 9.2% lower for female gender but only 1.9% lower in blacks. Diabetes was associated with 8.5% higher levels of cystatin C and 3.9% lower levels of creatinine. Higher C-reactive protein and white blood cell count and lower serum albumin were associated with higher levels of cystatin C and lower levels of creatinine. Adjustment for age, gender and race had a greater effect on the association of factors with creatinine than cystatin C. Hence, we found that cystatin C is affected by factors other than GFR which should be considered when the GFR is estimated using serum levels of cystatin C.


American Journal of Kidney Diseases | 2010

Estimating GFR using the CKD Epidemiology Collaboration (CKD-EPI) creatinine equation: more accurate GFR estimates, lower CKD prevalence estimates, and better risk predictions.

Andrew S. Levey; Lesley A. Stevens

Serum creatinine is ordered more than 281 million times annually in the United States (based on the 191,354,358 creatinine tests reported in 1996 and assuming annual growth rate in testing of 3%),1 and recent reports show that more than 70% of laboratories now report estimated glomerular filtration rate (GFR) using the Modification of Diet in Renal Disease (MDRD) Study equation.2 Recently, the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) developed and validated a new equation, the CKD-EPI creatinine equation, which uses the same variables as the MDRD Study, but is more accurate.3,4 Accuracy of GFR estimating equations is evaluated in comparison to measured GFR. However, as for other diagnostic tests, other criteria are also important in clinical practice and public health, including detecting disease, predicting prognosis, and guiding therapy. In this issue of the American Journal of Kidney Diseases, 2 articles compare the CKD-EPI equation with the MDRD Study equation for estimating the prevalence of CKD and predicting the risk of subsequent events in the general population.5,6 In this editorial, we comment briefly on these articles and review the accuracy and applications of current GFR estimating equations (Table 1). Table 1 Comparison of 3 GFR Estimating Equations for Creatinine


American Journal of Kidney Diseases | 2009

Comparison of Drug Dosing Recommendations Based on Measured GFR and Kidney Function Estimating Equations

Lesley A. Stevens; Thomas D. Nolin; Michelle M. Richardson; Harold I. Feldman; Julia B. Lewis; Roger A. Rodby; Raymond R. Townsend; Aghogho Okparavero; Yaping (Lucy) Zhang; Christopher H. Schmid; Andrew S. Levey

BACKGROUND Kidney disease alters the pharmacokinetic disposition of many medications, requiring dosage adjustment to maintain therapeutic serum concentrations. The Cockcroft-Gault (CG) equation is used for pharmacokinetic studies and drug dosage adjustments, but the Modification of Diet in Renal Disease (MDRD) Study equation is more accurate and more often reported by clinical laboratories than the CG equation. STUDY DESIGN Diagnostic test study. SETTINGS & PARTICIPANTS Pooled data set for 5,504 participants from 6 research studies and 4 clinical populations with measured glomerular filtration rate (GFR). INDEX TEST Estimated kidney function using the MDRD Study and CG equations incorporating actual (CG) or ideal body weight (CG(IBW)) and standardized serum creatinine concentrations. REFERENCE TEST Measured GFR assessed by using iodine-125-iothalamate urinary clearance. OUTCOME Concordance of assigned kidney function categories designated by the Food and Drug Administration (FDA) Guidance for Industry for pharmacokinetic studies and recommended dosages of 15 medications cleared by the kidneys. RESULTS Concordance of kidney function estimates with measured GFR for FDA-assigned kidney function categories was 78% for the MDRD Study equation compared with 73% for the CG equation (P < 0.001) and 66% for the CG(IBW) equation (P < 0.001). Concordance between the MDRD Study equation and CG and CG(IBW) equations was 78% and 75%, respectively (P < 0.001). Concordance of kidney function estimates with measured GFR for recommended drug dosages was 88% for MDRD Study equation compared with 85% for the CG equation (P < 0.001) and 82% for the CG(IBW) equation (P < 0.001), with lower concordance when dosing recommendations for drugs included narrow GFR ranges. Concordance rates between the CG and CG(IBW) equations and MDRD Study equation were 89% and 88%, respectively (P < 0.05). LIMITATIONS Results based on simulation rather than pharmacokinetic studies. Outcome was drug dosage recommendations, rather than observed drug efficacy and safety. CONCLUSIONS The MDRD Study equation can also be used for pharmacokinetic studies and drug dosage adjustments. As more accurate GFR-estimating equations are developed, they should be used for these purposes.

Collaboration


Dive into the Lesley A. Stevens's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Josef Coresh

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John W. Kusek

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Joseph A. Vassalotti

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge