Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lesley B. Knoll is active.

Publication


Featured researches published by Lesley B. Knoll.


Ecology | 2006

NUTRIENT CYCLING BY FISH SUPPORTS RELATIVELY MORE PRIMARY PRODUCTION AS LAKE PRODUCTIVITY INCREASES

Michael J. Vanni; Anna M. Bowling; Elizabeth M. Dickman; R. Scott Hale; Karen A. Higgins; Martin J. Horgan; Lesley B. Knoll; William H. Renwick; Roy A. Stein

Animals can be important in nutrient cycling in particular ecosystems, but few studies have examined how this importance varies along environmental gradients. In this study we quantified the nutrient cycling role of an abundant detritivorous fish species, the gizzard shad (Dorosoma cepedianum), in reservoir ecosystems along a gradient of ecosystem productivity. Gizzard shad feed mostly on sediment detritus and excrete sediment-derived nutrients into the water column, thereby mediating a cross-habitat translocation of nutrients to phytoplankton. We quantified nitrogen and phosphorus cycling (excretion) rates of gizzard shad, as well as nutrient demand by phytoplankton, in seven lakes over a four-year period (16 lake-years). The lakes span a gradient of watershed land use (the relative amounts of land used for agriculture vs. forest) and productivity. As the watersheds of these lakes became increasingly dominated by agricultural land, primary production rates, lake trophic state indicators (total phosphorus and chlorophyll concentrations), and nutrient flux through gizzard shad populations all increased. Nutrient cycling by gizzard shad supported a substantial proportion of primary production in these ecosystems, and this proportion increased as watershed agriculture (and ecosystem productivity) increased. In the four productive lakes with agricultural watersheds (>78% agricultural land), gizzard shad supported on average 51% of phytoplankton primary production (range 27-67%). In contrast, in the three relatively unproductive lakes in forested or mixed-land-use watersheds (>47% forest, <52% agricultural land), gizzard shad supported 18% of primary production (range 14-23%). Thus, along a gradient of forested to agricultural landscapes, both watershed nutrient inputs and nutrient translocation by gizzard shad increase, but our data indicate that the importance of nutrient translocation by gizzard shad increases more rapidly. Our results therefore support the hypothesis that watersheds and gizzard shad jointly regulate primary production in reservoir ecosystems.


Scientific Reports | 2016

Ecological consequences of long-term browning in lakes.

Craig E. Williamson; Erin P. Overholt; Rachel M. Pilla; Taylor H. Leach; Jennifer A. Brentrup; Lesley B. Knoll; Elizabeth M. Mette; Robert E. Moeller

Increases in terrestrially-derived dissolved organic matter (DOM) have led to the browning of inland waters across regions of northeastern North America and Europe. Short-term experimental and comparative studies highlight the important ecological consequences of browning. These range from transparency-induced increases in thermal stratification and oxygen (O2) depletion to changes in pelagic food web structure and alteration of the important role of inland waters in the global carbon cycle. However, multi-decadal studies that document the net ecological consequences of long-term browning are lacking. Here we show that browning over a 27 year period in two lakes of differing transparency resulted in fundamental changes in vertical habitat gradients and food web structure, and that these responses were stronger in the more transparent lake. Surface water temperatures increased by 2–3 °C in both lakes in the absence of any changes in air temperature. Water transparency to ultraviolet (UV) radiation showed a fivefold decrease in the more transparent lake. The primary zooplankton grazers decreased, and in the more transparent lake were largely replaced by a two trophic level zooplankton community. These findings provide new insights into the net effects of the complex and contrasting mechanisms that underlie the ecosystem consequences of browning.


Inland Waters | 2015

Predicting eutrophication status in reservoirs at large spatial scales using landscape and morphometric variables

Lesley B. Knoll; Elisabeth J. Hagenbuch; Martin Henry H. Stevens; Michael J. Vanni; William H. Renwick; Jonathan C. Sieber Denlinger; R. Scott Hale; María J. González

Abstract Aquatic ecosystem management requires knowledge of the links among landscape-level anthropogenic disturbances and aquatic ecosystem properties. With large catchment area to surface area ratios (CA:SA), reservoirs often receive substantial terrestrial subsidies and can be particularly sensitive to eutrophication. Reservoir numbers and attendant management problems are increasing, and tools are needed to categorize their eutrophication status. We analyzed a dataset of 109 reservoirs in Ohio (USA) in an effort to classify eutrophication status using landscape-level features and reservoir morphometry. These predictor variables were selected because they are relatively stable and easily measured. We employed regression tree analysis and used a composite eutrophication variable as our response variable. Our regression tree analysis accurately divided 67% of Ohio reservoirs into 4 eutrophication status groups using 3 predictor variables: percentage of catchment area composed of agriculture versus forest; maximum reservoir depth; and CA:SA. We can infer that reservoirs with catchments containing >71% forest will likely be oligotrophic to mesotrophic. For reservoirs with <71% catchment forest, trophic status is determined by the relative extent of catchment row crops and either CA:SA or maximum depth. We applied our regression tree to a subset of reservoirs in the Environmental Protection Agency’s National Lakes Assessment (NLA; n = 339 reservoirs). With a few exceptions, we categorized NLA reservoirs by eutrophication status despite their broad geographical range across the contiguous USA. Our results show that a few easily measured, stable parameters can classify reservoir eutrophication status. Models like ours may be useful for broad-scale management decisions.


Inland Waters | 2016

The potential of high-frequency profiling to assess vertical and seasonal patterns of phytoplankton dynamics in lakes: An extension of the Plankton Ecology Group (PEG) model

Jennifer A. Brentrup; Craig E. Williamson; William Colom-Montero; Werner Eckert; Elvira de Eyto; Hans-Peter Grossart; Yannick Huot; Peter D. F. Isles; Lesley B. Knoll; Taylor H. Leach; Chris G. McBride; Don Pierson; Francesco Pomati; Jordan S. Read; Kevin C. Rose; Nihar R. Samal; Peter A. Staehr; Luke A. Winslow

Abstract The use of high-frequency sensors on profiling buoys to investigate physical, chemical, and biological processes in lakes is increasing rapidly. Profiling buoys with automated winches and sensors that collect high-frequency chlorophyll fluorescence (ChlF) profiles in 11 lakes in the Global Lake Ecological Observatory Network (GLEON) allowed the study of the vertical and temporal distribution of ChlF, including the formation of subsurface chlorophyll maxima (SSCM). The effectiveness of 3 methods for sampling phytoplankton distributions in lakes, including (1) manual profiles, (2) single-depth buoys, and (3) profiling buoys were assessed. High frequency ChlF surface data and profiles were compared to predictions from the Plankton Ecology Group (PEG) model. The depth-integrated ChlF dynamics measured by the profiling buoy data revealed a greater complexity that neither conventional sampling nor the generalized PEG model captured. Conventional sampling techniques would have missed the SSCM in 7 of 11 study lakes. Although surface-only ChlF data underestimated average water column ChlF, at times by nearly 2-fold in 4 of the lakes, overall there was a remarkable similarity between surface and mean water column data. Contrary to the PEG models proposed negligible role for physical control of phytoplankton during the growing season, thermal structure and light availability were closely associated with ChlF seasonal depth distribution. Thus, an extension of the PEG model is proposed, with a new conceptual framework that explicitly includes physical metrics to better predict SSCM formation in lakes and highlight when profiling buoys are especially informative.


Inland Waters | 2016

Quantifying pelagic phosphorus regeneration using three methods in lakes of varying productivity

Lesley B. Knoll; Anne Morgan; Michael J. Vanni; Taylor H. Leach; Tanner J. Williamson; Jennifer A. Brentrup

Phosphorus (P) is often a limiting nutrient in freshwater ecosystems, and understanding P dynamics in lakes is critical for eutrophication management. Pelagic P regeneration can support a large fraction of primary production in stratified freshwaters. Various techniques have been used to quantify pelagic P regeneration including (1) P mass balance supply–demand, (2) regression using total P as a predictor, and, more recently, (3) whole-lake metabolism calculated from high-frequency dissolved oxygen (DO) data. To our knowledge no study comparing these methods in multiple lakes has been performed. To compare these 3 approaches, we investigated 3 Global Lake Ecological Observatory Network (GLEON) lakes that differ in productivity: Acton, a Midwestern USA hypereutrophic reservoir; and 2 Northeastern USA glacial lakes, oligotrophic Giles and mesotrophic/dystrophic Lacawac. In Acton, we used all 3 methods, but for Giles and Lacawac we used only the total P regression and metabolism techniques. Our results show the best agreement among methods in the mesotrophic lake, whereas the metabolism approach underestimated regeneration in the oligotrophic lake and overestimated regeneration in the hypereutrophic reservoir compared with other methods. P regeneration rates for the hypereutrophic reservoir were the most sensitive to the metabolism-based input parameters. Our study illustrates a novel use of high-frequency DO data, which are commonly collected on many GLEON buoys, to understand lake nutrient dynamics.


Inland Waters | 2018

Browning-related oxygen depletion in an oligotrophic lake

Lesley B. Knoll; Craig E. Williamson; Rachel M. Pilla; Taylor H. Leach; Jennifer A. Brentrup; Thomas J. Fisher

ABSTRACT In recent decades, terrestrial dissolved organic matter (DOM) has increased in many northeastern North American and European lakes and is contributing to long-term browning. We used a long-term dataset (1988–2014) to study the consequences of browning-related decreased water transparency on dissolved oxygen dynamics in 2 small temperate lakes in Pennsylvania, USA, that differ in their dissolved organic carbon concentrations. The oligotrophic (“clearer”) lake has low productivity and historically oxygenated deep waters. The mesotrophic–slightly dystrophic (“browner”) lake also has relatively low productivity but historically anoxic deep waters. We examined whether browning coincided with changes in summer dissolved oxygen dynamics, with a focus on deep-water oxygen depletion. In the clearer lake, we found that minimum oxygen concentrations decreased by ∼4.4 mg L−1 over the 27-year period, and these changes were strongly associated with both decreased water transparency and increased water column stability. We also found a shallowing of the maximum dissolved oxygen depth by ∼4.5  m and anoxic conditions established in more recent years. In the browner lake, the metrics we used did not detect any significant changes in dissolved oxygen, supporting the prediction that vertical temperature and oxygen patterns in clearer lakes may be more sensitive to increasing DOM than darker lakes. Anoxia is traditionally considered to be a consequence of anthropogenic nutrient loading and, more recently, a warming climate. We show that browning is another type of environmental change that may similarly result in anoxia in oligotrophic lakes.


Limnology and Oceanography | 2009

Lakes and reservoirs as regulators of carbon cycling and climate

Lars J. Tranvik; John A. Downing; James B. Cotner; Steven Arthur Loiselle; Robert G. Striegl; Thomas J. Ballatore; Peter J. Dillon; Kerri Finlay; Kenneth Fortino; Lesley B. Knoll; Pirkko Kortelainen; Tiitt Kutser; Søren Larsen; Isabelle Laurion; Dina M. Leech; S. Leigh McCallister; Diane M. McKnight; John M. Melack; Erin P. Overholt; Jason A. Porter; Yves T. Prairie; William H. Renwick; Fábio Roland; Bradford S. Sherman; David W. Schindler; Sebastian Sobek; Alain Tremblay; Michael J. Vanni; Antoine M. Verschoor; Eddie von Wachenfeldt


Limnology and Oceanography | 2003

Phytoplankton primary production and photosynthetic parameters in reservoirs along a gradient of watershed land use

Lesley B. Knoll; Michael J. Vanni; William H. Renwick


Limnology and Oceanography | 2005

Complex interactions between the zebra mussel, Dreissena polymorpha, and the harmful phytoplankter, Microcystis aeruginosa

Orlando Sarnelle; Alan E. Wilson; Stephen K. Hamilton; Lesley B. Knoll; David F. Raikow


Canadian Journal of Fisheries and Aquatic Sciences | 2008

Invasive zebra mussels (Dreissena polymorpha) increase cyanobacterial toxin concentrations in low-nutrient lakes

Lesley B. Knoll; OrlandoSarnelleO. Sarnelle; Stephen K. Hamilton; Carrie E. H. Kissman; Alan E. Wilson; Joan B. Rose; Mechelle R. Morgan

Collaboration


Dive into the Lesley B. Knoll's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan E. Wilson

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge