Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lesley C. Adès is active.

Publication


Featured researches published by Lesley C. Adès.


American Journal of Human Genetics | 2007

Effect of Mutation Type and Location on Clinical Outcome in 1,013 Probands with Marfan Syndrome or Related Phenotypes and FBN1 Mutations: An International Study

L. Faivre; Gwenaëlle Collod-Béroud; Bart Loeys; Anne H. Child; Christine Binquet; Elodie Gautier; Bert Callewaert; Eloisa Arbustini; Kenneth H. Mayer; Mine Arslan-Kirchner; Anatoli Kiotsekoglou; Paolo Comeglio; N Marziliano; Hal Dietz; Dorothy Halliday; Christophe Béroud; Claire Bonithon-Kopp; Mireille Claustres; C. Muti; Henri Plauchu; Peter N. Robinson; Lesley C. Adès; Andrew Biggin; B. Benetts; Maggie Brett; Katherine Holman; J. De Backer; Paul Coucke; Uta Francke; A. De Paepe

Mutations in the fibrillin-1 (FBN1) gene cause Marfan syndrome (MFS) and have been associated with a wide range of overlapping phenotypes. Clinical care is complicated by variable age at onset and the wide range of severity of aortic features. The factors that modulate phenotypical severity, both among and within families, remain to be determined. The availability of international FBN1 mutation Universal Mutation Database (UMD-FBN1) has allowed us to perform the largest collaborative study ever reported, to investigate the correlation between the FBN1 genotype and the nature and severity of the clinical phenotype. A range of qualitative and quantitative clinical parameters (skeletal, cardiovascular, ophthalmologic, skin, pulmonary, and dural) was compared for different classes of mutation (types and locations) in 1,013 probands with a pathogenic FBN1 mutation. A higher probability of ectopia lentis was found for patients with a missense mutation substituting or producing a cysteine, when compared with other missense mutations. Patients with an FBN1 premature termination codon had a more severe skeletal and skin phenotype than did patients with an inframe mutation. Mutations in exons 24-32 were associated with a more severe and complete phenotype, including younger age at diagnosis of type I fibrillinopathy and higher probability of developing ectopia lentis, ascending aortic dilatation, aortic surgery, mitral valve abnormalities, scoliosis, and shorter survival; the majority of these results were replicated even when cases of neonatal MFS were excluded. These correlations, found between different mutation types and clinical manifestations, might be explained by different underlying genetic mechanisms (dominant negative versus haploinsufficiency) and by consideration of the two main physiological functions of fibrillin-1 (structural versus mediator of TGF beta signalling). Exon 24-32 mutations define a high-risk group for cardiac manifestations associated with severe prognosis at all ages.


Nature Genetics | 2000

Mutations in TGIF cause holoprosencephaly and link NODAL signalling to human neural axis determination

Karen W. Gripp; David Wotton; Michael C. Edwards; Erich Roessler; Lesley C. Adès; Peter Meinecke; Antonio Richieri-Costa; Elaine H. Zackai; Joan Massagué; Maximilian Muenke; Stephen J. Elledge

Holoprosencephaly (HPE) is the most common structural defect of the developing forebrain in humans (1 in 250 conceptuses, 1 in 16,000 live-born infants). HPE is aetiologically heterogeneous, with both environmental and genetic causes. So far, three human HPE genes are known: SHH at chromosome region 7q36 (ref. 6); ZIC2 at 13q32 (ref. 7); and SIX3 at 2p21 (ref. 8). In animal models, genes in the Nodal signalling pathway, such as those mutated in the zebrafish mutants cyclops (refs 9,10), squint (ref. 11) and one-eyed pinhead (oep; ref. 12), cause HPE. Mice heterozygous for null alleles of both Nodal and Smad2 have cyclopia. Here we describe the involvement of the TG-interacting factor (TGIF), a homeodomain protein, in human HPE. We mapped TGIF to the HPE minimal critical region in 18p11.3. Heterozygous mutations in individuals with HPE affect the transcriptional repression domain of TGIF, the DNA-binding domain or the domain that interacts with SMAD2. (The latter is an effector in the signalling pathway of the neural axis developmental factor NODAL, a member of the transforming growth factor-β (TGF-β) family.) Several of these mutations cause a loss of TGIF function. Thus, TGIF links the NODAL signalling pathway to the bifurcation of the human forebrain and the establishment of ventral midline structures.


Journal of Medical Genetics | 1998

Hirschsprung disease, microcephaly, mental retardation, and characteristic facial features: delineation of a new syndrome and identification of a locus at chromosome 2q22-q23.

David Mowat; G. D. H. Croaker; D. T. Cass; Bronwyn Kerr; J. Chaitow; Lesley C. Adès; Nicole Chia; Meredith Wilson

We have identified six children with a distinctive facial phenotype in association with mental retardation (MR), microcephaly, and short stature, four of whom presented with Hirschsprung (HSCR) disease in the neonatal period. HSCR was diagnosed in a further child at the age of 3 years after investigation for severe chronic constipation and another child, identified as sharing the same facial phenotype, had chronic constipation, but did not have HSCR. One of our patients has an interstitial deletion of chromosome 2, del(2)(q21q23). These children strongly resemble the patient reported by Lurie et al with HSCR and dysmorphic features associated with del(2)(q22q23). All patients have been isolated cases, suggesting a contiguous gene syndrome or a dominant single gene disorder involving a locus for HSCR located at 2q22-q23. Review of published reports suggests that there is significant phenotypic and genetic heterogeneity within the group of patients with HSCR, MR, and microcephaly. In particular, our patients appear to have a separate disorder from Goldberg-Shprintzen syndrome, for which autosomal recessive inheritance has been proposed because of sib recurrence and consanguinity in some families.


Nature Genetics | 2009

Germline mutations in WTX cause a sclerosing skeletal dysplasia but do not predispose to tumorigenesis

Zandra A. Jenkins; Margriet van Kogelenberg; Timothy R. Morgan; Aaron Jeffs; Ryuji Fukuzawa; Esther J. Pearl; Christina Thaller; Anne V. Hing; Mary Porteous; Sixto García-Miñaúr; Axel Bohring; Didier Lacombe; Fiona Stewart; Torunn Fiskerstrand; Laurence A. Bindoff; Siren Berland; Lesley C. Adès; Michel Tchan; Albert David; Louise C. Wilson; Raoul C. M. Hennekam; Dian Donnai; Sahar Mansour; Valérie Cormier-Daire; Stephen P. Robertson

Abnormalities in WNT signaling are implicated in a broad range of developmental anomalies and also in tumorigenesis. Here we demonstrate that germline mutations in WTX (FAM123B), a gene that encodes a repressor of canonical WNT signaling, cause an X-linked sclerosing bone dysplasia, osteopathia striata congenita with cranial sclerosis (OSCS; MIM300373). This condition is typically characterized by increased bone density and craniofacial malformations in females and lethality in males. The mouse homolog of WTX is expressed in the fetal skeleton, and alternative splicing implicates plasma membrane localization of WTX as a factor associated with survival in males with OSCS. WTX has also been shown to be somatically inactivated in 11–29% of cases of Wilms tumor. Despite being germline for such mutations, individuals with OSCS are not predisposed to tumor development. The observed phenotypic discordance dependent upon whether a mutation is germline or occurs somatically suggests the existence of temporal or spatial constraints on the action of WTX during tumorigenesis.


Nature Genetics | 2009

FOXC1 is required for normal cerebellar development and is a major contributor to chromosome 6p25.3 Dandy-Walker malformation

Kimberly A. Aldinger; Ordan J. Lehmann; Louanne Hudgins; Victor V. Chizhikov; Alexander G. Bassuk; Lesley C. Adès; Ian D. Krantz; William B. Dobyns; Kathleen J. Millen

Dandy-Walker malformation (DWM), the most common human cerebellar malformation, has only one characterized associated locus. Here we characterize a second DWM-linked locus on 6p25.3, showing that deletions or duplications encompassing FOXC1 are associated with cerebellar and posterior fossa malformations including cerebellar vermis hypoplasia (CVH), mega-cisterna magna (MCM) and DWM. Foxc1-null mice have embryonic abnormalities of the rhombic lip due to loss of mesenchyme-secreted signaling molecules with subsequent loss of Atoh1 expression in vermis. Foxc1 homozygous hypomorphs have CVH with medial fusion and foliation defects. Human FOXC1 heterozygous mutations are known to affect eye development, causing a spectrum of glaucoma-associated anomalies (Axenfeld-Rieger syndrome, ARS; MIM no. 601631). We report the first brain imaging data from humans with FOXC1 mutations and show that these individuals also have CVH. We conclude that alteration of FOXC1 function alone causes CVH and contributes to MCM and DWM. Our results highlight a previously unrecognized role for mesenchyme-neuroepithelium interactions in the mid-hindbrain during early embryogenesis.


American Journal of Human Genetics | 2011

Assessment of 2q23.1 microdeletion syndrome implicates MBD5 as a single causal locus of intellectual disability, epilepsy, and autism spectrum disorder

Michael E. Talkowski; Sureni V Mullegama; Jill A. Rosenfeld; Bregje W.M. van Bon; Yiping Shen; Elena A. Repnikova; Julie M. Gastier-Foster; Devon Lamb Thrush; Sekar Kathiresan; Douglas M. Ruderfer; Colby Chiang; Carrie Hanscom; Carl Ernst; Amelia M. Lindgren; Cynthia C. Morton; Yu An; Caroline Astbury; Louise Brueton; Klaske D. Lichtenbelt; Lesley C. Adès; Marco Fichera; Corrado Romano; Jeffrey W. Innis; Charles A. Williams; Dennis Bartholomew; Margot I. Van Allen; Aditi Shah Parikh; Lilei Zhang; Bai-Lin Wu; Robert E. Pyatt

Persons with neurodevelopmental disorders or autism spectrum disorder (ASD) often harbor chromosomal microdeletions, yet the individual genetic contributors within these regions have not been systematically evaluated. We established a consortium of clinical diagnostic and research laboratories to accumulate a large cohort with genetic alterations of chromosomal region 2q23.1 and acquired 65 subjects with microdeletion or translocation. We sequenced translocation breakpoints; aligned microdeletions to determine the critical region; assessed effects on mRNA expression; and examined medical records, photos, and clinical evaluations. We identified a single gene, methyl-CpG-binding domain 5 (MBD5), as the only locus that defined the critical region. Partial or complete deletion of MBD5 was associated with haploinsufficiency of mRNA expression, intellectual disability, epilepsy, and autistic features. Fourteen alterations, including partial deletions of noncoding regions not typically captured or considered pathogenic by current diagnostic screening, disrupted MBD5 alone. Expression profiles and clinical characteristics were largely indistinguishable between MBD5-specific alteration and deletion of the entire 2q23.1 interval. No copy-number alterations of MBD5 were observed in 7878 controls, suggesting MBD5 alterations are highly penetrant. We surveyed MBD5 coding variations among 747 ASD subjects compared to 2043 non-ASD subjects analyzed by whole-exome sequencing and detected an association with a highly conserved methyl-CpG-binding domain missense variant, p.79Gly>Glu (c.236G>A) (p = 0.012). These results suggest that genetic alterations of MBD5 cause features of 2q23.1 microdeletion syndrome and that this epigenetic regulator significantly contributes to ASD risk, warranting further consideration in research and clinical diagnostic screening and highlighting the importance of chromatin remodeling in the etiology of these complex disorders.


American Journal of Medical Genetics Part A | 2010

De novo ACTA2 mutation causes a novel syndrome of multisystemic smooth muscle dysfunction

Dianna M. Milewicz; John R. Østergaard; Leena Ala-Kokko; Nadia Khan; Dorothy K. Grange; Roberto Mendoza-Londono; Timothy J. Bradley; Ann Haskins Olney; Lesley C. Adès; Joseph F. Maher; Dong Chuan Guo; L. Maximilian Buja; Dong H. Kim; James C. Hyland; Ellen S. Regalado

Smooth muscle cells (SMCs) contract to perform many physiological functions, including regulation of blood flow and pressure in arteries, contraction of the pupils, peristalsis of the gut, and voiding of the bladder. SMC lineage in these organs is characterized by cellular expression of the SMC isoform of α‐actin, encoded by the ACTA2 gene. We report here on a unique and de novo mutation in ACTA2, R179H, that causes a syndrome characterized by dysfunction of SMCs throughout the body, leading to aortic and cerebrovascular disease, fixed dilated pupils, hypotonic bladder, malrotation, and hypoperistalsis of the gut and pulmonary hypertension.


Journal of Medical Genetics | 2000

Evidence for digenic inheritance in some cases of Antley-Bixler syndrome?

William Reardon; Anne Smith; John W. Honour; Peter C. Hindmarsh; Debipriya Das; Gill Rumsby; Isabelle Nelson; Sue Malcolm; Lesley C. Adès; David Sillence; Dhavendra Kumar; Celia DeLozier-Blanchet; Shane McKee; Thaddeus E. Kelly; Wallace L McKeehan; Michael Baraitser; Robin M. Winter

The Antley-Bixler syndrome has been thought to be caused by an autosomal recessive gene. However, patients with this phenotype have been reported with a new dominant mutation at theFGFR2 locus as well as in the offspring of mothers taking the antifungal agent fluconazole during early pregnancy. In addition to the craniosynostosis and joint ankylosis which are the clinical hallmarks of the condition, many patients, especially females, have genital abnormalities. We now report abnormalities of steroid biogenesis in seven of 16 patients with an Antley-Bixler phenotype. Additionally, we identify FGFR2 mutations in seven of these 16 patients, including one patient with abnormal steroidogenesis. These findings, suggesting that some cases of Antley-Bixler syndrome are the outcome of two distinct genetic events, allow a hypothesis to be formulated under which we may explain all the differing and seemingly contradictory circumstances in which the Antley-Bixler phenotype has been recognised.


European Journal of Human Genetics | 2010

Altered TGFβ signaling and cardiovascular manifestations in patients with autosomal recessive cutis laxa type I caused by fibulin-4 deficiency

Marjolijn Renard; Tammy Holm; Regan Veith; Bert Callewaert; Lesley C. Adès; Osman Baspinar; Angela Pickart; Majed Dasouki; Juliane Hoyer; Anita Rauch; Pamela Trapane; Michael G. Earing; Paul Coucke; Lynn Y. Sakai; Harry C. Dietz; Anne De Paepe; Bart Loeys

Fibulin-4 is a member of the fibulin family, a group of extracellular matrix proteins prominently expressed in medial layers of large veins and arteries. Involvement of the FBLN4 gene in cardiovascular pathology was shown in a murine model and in three patients affected with cutis laxa in association with systemic involvement. To elucidate the contribution of FBLN4 in human disease, we investigated two cohorts of patients. Direct sequencing of 17 patients with cutis laxa revealed no FBLN4 mutations. In a second group of 22 patients presenting with arterial tortuosity, stenosis and aneurysms, FBLN4 mutations were identified in three patients, two homozygous missense mutations (p.Glu126Lys and p.Ala397Thr) and compound heterozygosity for missense mutation p.Glu126Val and frameshift mutation c.577delC. Immunoblotting analysis showed a decreased amount of fibulin-4 protein in the fibroblast culture media of two patients, a finding sustained by diminished fibulin-4 in the extracellular matrix of the aortic wall on immunohistochemistry. pSmad2 and CTGF immunostaining of aortic and lung tissue revealed an increase in transforming growth factor (TGF)β signaling. This was confirmed by pSmad2 immunoblotting of fibroblast cultures. In conclusion, patients with recessive FBLN4 mutations are predominantly characterized by aortic aneurysms, arterial tortuosity and stenosis. This confirms the important role of fibulin-4 in vascular elastic fiber assembly. Furthermore, we provide the first evidence for the involvement of altered TGFβ signaling in the pathogenesis of FBLN4 mutations in humans.


Pediatrics | 2009

Clinical and Molecular Study of 320 Children With Marfan Syndrome and Related Type I Fibrillinopathies in a Series of 1009 Probands With Pathogenic FBN1 Mutations

Laurence Faivre; Alice Masurel-Paulet; Gwenaëlle Collod-Béroud; Bert Callewaert; Anne H. Child; Chantal Stheneur; Christine Binquet; Elodie Gautier; Bertrand Chevallier; Frédéric Huet; Bart Loeys; Eloisa Arbustini; Karin Mayer; Mine Arslan-Kirchner; Anatoli Kiotsekoglou; Paolo Comeglio; Maurizia Grasso; Dorothy Halliday; Christophe Béroud; Claire Bonithon-Kopp; Mireille Claustres; Peter N. Robinson; Lesley C. Adès; Julie De Backer; Paul Coucke; Uta Francke; Anne De Paepe; Catherine Boileau; Guillaume Jondeau

From a large series of 1009 probands with pathogenic FBN1 mutations, data for 320 patients <18 years of age at the last follow-up evaluation were analyzed (32%). At the time of diagnosis, the median age was 6.5 years. At the last examination, the population was classified as follows: neonatal Marfan syndrome, 14%; severe Marfan syndrome, 19%; classic Marfan syndrome, 32%; probable Marfan syndrome, 35%. Seventy-one percent had ascending aortic dilation, 55% ectopia lentis, and 28% major skeletal system involvement. Even when aortic complications existed in childhood, the rates of aortic surgery and aortic dissection remained low (5% and 1%, respectively). Some diagnostic features (major skeletal system involvement, striae, dural ectasia, and family history) were more frequent in the 10- to <18-year age group, whereas others (ascending aortic dilation and mitral abnormalities) were more frequent in the population with neonatal Marfan syndrome. Only 56% of children could be classified as having Marfan syndrome, according to international criteria, at their last follow-up evaluation when the presence of a FBN1 mutation was not considered as a major feature, with increasing frequency in the older age groups. Eighty-five percent of child probands fulfilled international criteria after molecular studies, which indicates that the discovery of a FBN1 mutation can be a valuable diagnostic aid in uncertain cases. The distributions of mutation types and locations in this pediatric series revealed large proportions of probands carrying mutations located in exons 24 to 32 (33%) and in-frame mutations (75%). Apart from lethal neonatal Marfan syndrome, we confirm that the majority of clinical manifestations of Marfan syndrome increase with age, which emphasizes the poor applicability of the international criteria to this diagnosis in childhood and the need for follow-up monitoring in cases of clinical suspicion of Marfan syndrome.

Collaboration


Dive into the Lesley C. Adès's collaboration.

Top Co-Authors

Avatar

Eric Haan

University of Adelaide

View shared research outputs
Top Co-Authors

Avatar

Dianna M. Milewicz

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Meredith Wilson

Children's Hospital at Westmead

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bert Callewaert

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar

Katherine Holman

Children's Hospital at Westmead

View shared research outputs
Researchain Logo
Decentralizing Knowledge