Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lesley C. Batty is active.

Publication


Featured researches published by Lesley C. Batty.


Environmental Pollution | 2011

Phytotoxicity of silver nanoparticles to Lemna minor L.

Eva J. Gubbins; Lesley C. Batty; Jamie R. Lead

The use of silver nanoparticles (AgNPs) in commercial products has increased significantly in recent years. Although there has been some attempt to determine the toxic effects of AgNPs, there is little information on aquatic plants which have a vital role in ecosystems. This study reports the use of Lemna minor L. clone St to investigate the phytotoxicity of AgNPs under modified OECD test conditions. AgNPs were synthesised, characterised and subsequently presented to the L. minor. Results showed that inhibition of plant growth was evident after exposure to small (~ 20 nm) and larger (~100 nm) AgNPs at low concentrations (5 μg L⁻¹) and this effect became more acute with a longer exposure time. There was a linear dose-response relationship after 14 d exposure. Using predicted environmental concentrations for wastewaters it was found that AgNPs may pose a significant potential risk to the environment.


Chemosphere | 2013

Interactions of copper and pyrene on phytoremediation potential of Brassica juncea in copper-pyrene co-contaminated soil

Chibuike Chigbo; Lesley C. Batty; Rebecca Bartlett

Phytoremediation which is a plant based remediation process is an emerging technology for treating inorganic (heavy metals) as well as organic pollutants. It may also be suitable for remediation of sites co-contaminated with heavy metals and organics which have become more prevalent. A glasshouse experiment was carried out to investigate the effect of 50 and 100 mg kg(-1) of copper or 250 and 500 mg kg(-1) of pyrene and the combined effect of copper and pyrene on the growth of Brassica juncea together with the uptake and accumulation of copper as well as dissipation of pyrene. Results showed a negative effect of copper-pyrene co-contamination on shoot and root dry matter and an inhibition of copper phytoextraction. Pyrene was significantly decreased in planted and non-planted soils accounting for 90-94% of initial extractable concentration in soil planted with B. juncea and 79-84% in non-planted soil which shows that the dissipation of pyrene was enhanced with planting. The occurrence of copper tended to increase the residual pyrene in planted soil, however in the presence of high concentration of Cu (100 mg kg(-1)), the residual pyrene concentration in soil were similar to those in unplanted soil. This may suggest that changes in the root physiology or rhizospheric microbial activity resulting from Cu stress could be an impediment to pyrene dissipation. The inhibition of Cu phytoextraction and degradation of pyrene by B. juncea under co-contamination may reduce the viability of phytoremediation in sites containing multiple pollutants.


Critical Reviews in Environmental Science and Technology | 2013

The Potential Use of Phytoremediation for Sites With Mixed Organic and Inorganic Contamination

Lesley C. Batty; Colette Dolan

Contaminated sites often contain a mixture of different organic and inorganic compounds that necessitate a more complex remediation process. The authors review the use of phytoremediation for both inorganic and organic substances and consider the evidence for the applicability of the use of plants for the remediation of mixed contaminant sites. The literature suggests that the interaction between plant and microbial communities within the rhizosphere is critical to remediation success and the use of diverse communities may further enhance this potential, but a specific understanding of function within the community is required before this can be achieved.


International Journal of Phytoremediation | 2008

Effect of a Polycyclic Aromatic Hydrocarbon on the Phytoremediation of Zinc by Two Plant Species (Brassica Juncea and Festuca Arundinacea)

Lesley C. Batty; Mark Anslow

The redevelopment of contaminated land is becoming increasingly necessary under sustainable-development legislation; however, many of the contaminated sites are “orphan” sites and therefore require a low-cost remediation technology. These sites often contain a cocktail of pollutants including organics and inorganics. Phytoremediation provides a possible solution, but there is little information available on the tolerance of plant species to multiple pollutants and their ability to remediate in mixed-contaminant soils. The effect of a polycyclic aromatic hydrocarbon (pyrene) in soil upon the remediation of zinc by Brassica juncea and Festuca arundinacea was investigated under normal climatic conditions in the United Kingdom. Zinc was effectively removed from mixed-contaminant soils in the presence of both species, in comparison to a control treatment. Both species accumulated zinc in plant tissues in the presence of pyrene, but the growth of B. juncea was significantly reduced when zinc and pyrene were supplied in combination. Zinc was predominantly associated with root tissues for F. arundinacea, whereas B. juncea contained higher concentrations in shoot tissues. F. arundinacea provides a possible species to be used for the phytoremediation of brownfield sites, but further research is required to determine a range of species that may be used and their applicability to different contaminants.


Chemosphere | 2013

Effect of combined pollution of chromium and benzo (a) pyrene on seed growth of Lolium perenne

Chibuike Chigbo; Lesley C. Batty

The single and joint effects of chromium (Cr) and benzo (a) pyrene (B (a) P) on the seed germination and the elongation of root and shoot of Lolium perenne were investigated. Seed germination represents the first important step to effective phytoremediation. Young seedlings may be susceptible to PAH and heavy metal contaminants. The results showed that in solution, increasing concentration of Cr could inhibit the germination rate as well as root and shoot elongation of L. perenne. Also, the increasing concentration of B (a) P (1-4 mg L(-1)) could accelerate the germination rate. The joint toxicity of Cr and B (a) P showed that increasing concentration of Cr and B (a) P had significant antagonistic effect on the germination rate of L. perenne. In the single factor experiments and joint effect tests of Cr and B (a) P on the seedling growth, the root and shoot elongation were inhibited significantly (p<0.05) for higher concentration of Cr whereas increasing concentration of B (a) P accelerated the shoot elongation. There were significant relationships between the concentration of pollutants and root and shoot elongation (p<0.05). Higher concentration of B (a) P with low concentration of Cr had significant antagonistic effect on shoot and root elongation of L. perenne in solution tests. Also, low concentration of B (a) P with increasing concentration of Cr had a significant synergistic effect on shoot elongation. The toxicity effects of Cr and B (a) P to seed germination, root and shoot elongation are-root elongation>shoot elongation>germination rate.


Wetlands | 2006

THE EFFECT OF VEGETATION ON POREWATER COMPOSITION IN A NATURAL WETLAND RECEIVING ACID MINE DRAINAGE

Lesley C. Batty; Alan J. M. Baker; Bryan D. Wheeler

The effect of plant growth on surface and porewater concentrations of Fe, Mn, Cu, and S within a natural wetland receiving acidic spoil heap drainage was determined over a period of one year. Comparisons were made between unvegetated sites and those colonized by either Phragmites australis or Eriophorum angustifolium. The presence of vegetation increased surface and porewater concentrations of Fe and Mn in spring and summer largely due to the effects of higher evapotranspiration rates in vegetated areas. Microbiological processes were also thought to be important in controlling iron and sulfur concentrations at depth due to bacterial sulfate reduction and metal sulfide precipitation and iron and manganese concentrations close to the sediment surface due to bacterially mediated oxidation. These processes varied in importance with season due to changes in the dominant chemical and biological processes, although the complexity of the system prevented isolation of the principal mechanism involved.


Biodiversity and Conservation | 2017

Local and landscape scale determinants of macroinvertebrate assemblages and their conservation value in ponds across an urban land-use gradient

Ian Thornhill; Lesley C. Batty; Russell G. Death; Nikolai Friberg; Mark E. Ledger

Urbanisation represents a growing threat to natural communities across the globe. Small aquatic habitats such as ponds are especially vulnerable and are often poorly protected by legislation. Many ponds are threatened by development and pollution from the surrounding landscape, yet their biodiversity and conservation value remain poorly described. Here we report the results of a survey of 30 ponds along an urban land-use gradient in the West Midlands, UK. We outline the environmental conditions of these urban ponds to identify which local and landscape scale environmental variables determine the biodiversity and conservation value of the macroinvertebrate assemblages in the ponds. Cluster analysis identified four groups of ponds with contrasting macroinvertebrate assemblages reflecting differences in macrophyte cover, nutrient status, riparian shading, the nature of the pond edge, surrounding land-use and the availability of other wetland habitats. Pond conservation status varied markedly across the sites. The richest macroinvertebrate assemblages with high conservation value were found in ponds with complex macrophyte stands and floating vegetation with low nutrient concentrations and little surrounding urban land. The most impoverished assemblages were found in highly urban ponds with hard-engineered edges, heavy shading and nutrient rich waters. A random forest classification model revealed that local factors usually had primacy over landscape scale factors in determining pond conservation value, and constitute a priority focus for management.


Urban Ecosystems | 2017

The application of graph theory and percolation analysis for assessing change in the spatial configuration of pond networks

Ian Thornhill; Lesley C. Batty; Matthew Hewitt; Nikolai Friberg; Mark E. Ledger

Pond networks support high levels of biodiversity when compared to other freshwater ecosystems such as rivers, lakes and streams. The persistence of species in these small, sometimes ephemeral, aquatic habitats depends on the dispersal of individuals among ponds in the landscape. However, the number of ponds across the landscape is at a historical low as urbanisation and intensified agricultural practices have led to a substantial loss of ponds (nodes in the pond network) over more than a century. Here, we examine the extent and drivers of pond loss in a heavily urbanised landscape (Birmingham, UK) over 105 years and determine how pond loss influences key structural properties of the pond network using graph theoretic approaches. Specifically, we calculated minimum spanning trees (MST) and performed percolation analyses to determine changes in both the spatial configuration and resilience of the pond network through time. Pond numbers declined by 82% between ca1904 and 2009, such that pond density decreased from 7.1 km-2 to 1.3 km-2. The MST analyses revealed increased distance between ponds in the network (i.e. edge length increased) by up to 49% over the 105-year period, indicating that ponds in the modern landscape (2009) were considerably more isolated, with fewer neighbours. This study demonstrates that graph theory has an excellent potential to inform the management of pond networks in order to support ecological communities that are less vulnerable to environmental change.


Environmental Science and Pollution Research | 2018

Effect of single and mixed polycyclic aromatic hydrocarbon contamination on plant biomass yield and PAH dissipation during phytoremediation

Seniyat Larai Afegbua; Lesley C. Batty

Polycyclic aromatic hydrocarbon (PAH)-contaminated sites have a mixture of PAH of varying concentration which may affect PAH dissipation differently to contamination with a single PAH. In this study, pot experiments investigated the impact of PAH contamination on Medicago sativa, Lolium perenne, and Festuca arundinacea biomass and PAH dissipation from soils spiked with phenanthrene (Phe), fluoranthene (Flu), and benzo[a]pyrene (B[a]P) in single and mixed treatments. Stimulatory or inhibitory effects of PAH contamination on plant biomass yields were not different for the single and mixed PAH treatments. Results showed significant effect of PAH treatments on plant growth with an increased root biomass yield for F. arundinacea in the Phe (175%) and Flu (86%) treatments and a root biomass decrease in the mixed treatment (4%). The mean residual PAHs in the planted treatments and unplanted control for the single treatments were not significantly different. B[a]P dissipation was enhanced for single and mixed treatments (71–72%) with F. arundinacea compared to the unplanted control (24–50%). On the other hand, B[a]P dissipation was inhibited with L. perenne (6%) in the single treatment and M. sativa (11%) and L. perenne (29%) in the mixed treatment. Abiotic processes had greater contribution to PAH dissipation compared to rhizodegradation in both treatments. In most cases, a stimulatory effect of PAH contamination on plant biomass yield without an enhancement of PAH dissipation was observed. Plant species among other factors affect the relative contribution of PAH dissipation mechanisms during phytoremediation. These factors determine the effectiveness and suitability of phytoremediation as a remedial strategy for PAH-contaminated sites. Further studies on impact of PAH contamination, plant selection, and rhizosphere activities on soil microbial community structure and remediation outcome are required.


Annals of Botany | 2002

Aluminium and phosphate uptake by Phragmites australis: the role of Fe, Mn and Al root plaques.

Lesley C. Batty; Alan J. M. Baker; Bryan D. Wheeler

Collaboration


Dive into the Lesley C. Batty's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick Byrne

Liverpool John Moores University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian Thornhill

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

Mark E. Ledger

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nikolai Friberg

Norwegian Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar

Colette Dolan

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

Eva J. Gubbins

University of Birmingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge