Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lesley I. McLellan is active.

Publication


Featured researches published by Lesley I. McLellan.


Free Radical Research | 1999

Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress.

John D. Hayes; Lesley I. McLellan

Increases in the intracellular levels of reactive oxygen species (ROS), frequently referred to as oxidative stress, represents a potentially toxic insult which if not counteracted will lead to membrane dysfunction, DNA damage and inactivation of proteins. Chronic oxidative stress has numerous pathological consequences including cancer, arthritis and neurodegenerative disease. Glutathione-associated metabolism is a major mechanism for cellular protection against agents which generate oxidative stress. It is becoming increasingly apparent that the glutathione tripeptide is central to a complex multifaceted detoxification system, where there is substantial inter-dependence between separate component members. Glutathione participates in detoxification at several different levels, and may scavenge free radicals, reduce peroxides or be conjugated with electrophilic compounds. Thus, glutathione provides the cell with multiple defences not only against ROS but also against their toxic products. This article discusses how glutathione biosynthesis, glutathione peroxidases, glutathione S-transferases and glutathione S-conjugate efflux pumps function in an integrated fashion to allow cellular adaption to oxidative stress. Co-ordination of this response is achieved, at least in part, through the antioxidant responsive element (ARE) which is found in the promoters of many of the genes that are inducible by oxidative and chemical stress. Transcriptional activation through this enhancer appears to be mediated by basic leucine zipper transcription factors such as Nrf and small Maf proteins. The nature of the intracellular sensor(s) for ROS and thiol-active chemicals which induce genes through the ARE is described. Gene activation through the ARE appears to account for the enhanced antioxidant and detoxification capacity of normal cells effected by many cancer chemopreventive agents. In certain instances it may also account for acquired resistance of tumours to cancer chemotherapeutic drugs. It is therefore clear that determining the mechanisms involved in regulation of ARE-driven gene expression has enormous medical implications.


Biochemical Journal | 2002

Loss of the Nrf2 transcription factor causes a marked reduction in constitutive and inducible expression of the glutathione S-transferase Gsta1, Gsta2, Gstm1, Gstm2, Gstm3 and Gstm4 genes in the livers of male and female mice.

Simon A. Chanas; Qing Jiang; Michael McMahon; Gail K. McWalter; Lesley I. McLellan; Clifford R. Elcombe; Colin J. Henderson; C. Roland Wolf; Moffat Gj; Ken Itoh; Masayuki Yamamoto; John D. Hayes

Mice that lack the Nrf2 basic-region leucine-zipper transcription factor are more sensitive than wild-type (WT) animals to the cytotoxic and genotoxic effects of foreign chemicals and oxidants. To determine the basis for the decrease in tolerance of the Nrf2 homozygous null mice to xenobiotics, enzyme assay, Western blotting and gene-specific real-time PCR (TaqMan) have been used to examine the extent to which hepatic expression of GSH-dependent enzymes is influenced by the transcription factor. The amounts of protein and mRNA for class Alpha, Mu and Pi glutathione S-transferases were compared between WT and Nrf2 knockout (KO) mice of both sexes under both constitutive and inducible conditions. Among the class Alpha and class Mu transferases, constitutive expression of Gsta1, Gsta2, Gstm1, Gstm2, Gstm3, Gstm4 and Gstm6 subunits was reduced in the livers of Nrf2 mutant mice to between 3% and 60% of that observed in WT mice. Induction of these subunits by butylated hydroxyanisole (BHA) was more marked in WT female mice than in WT male mice. TaqMan analyses showed the increase in transferase mRNA caused by BHA was attenuated in Nrf2(-/-) mice, with the effect being most apparent in the case of Gsta1, Gstm1 and Gstm3. Amongst class Pi transferase subunits, the constitutive hepatic level of mRNA for Gstp1 and Gstp2 was not substantially affected in the KO mice, but their induction by BHA was dependent on Nrf2; this was more obvious in female mutant mice than in male mice. Nrf2 KO mice exhibited reduced constitutive expression of the glutamate cysteine ligase catalytic subunit, and, to a lesser extent, the expression of glutamate cysteine ligase modifier subunit. Little variation was observed in the levels of glutathione synthase in the different mouse lines. Thus the increased sensitivity of Nrf2(-/-) mice to xenobiotics can be partly attributed to a loss in constitutive expression of multiple GSH-dependent enzymes, which causes a reduction in intrinsic detoxification capacity in the KO animal. These data also indicate that attenuated induction of GSH-dependent enzymes in Nrf2(-/-) mice probably accounts for their failure to adapt to chronic exposure to chemical and oxidative stress.


Journal of Nutrition | 2004

Transcription Factor Nrf2 Is Essential for Induction of NAD(P)H:Quinone Oxidoreductase 1, Glutathione S-Transferases, and Glutamate Cysteine Ligase by Broccoli Seeds and Isothiocyanates

Gail K. McWalter; Larry G. Higgins; Lesley I. McLellan; Colin J. Henderson; Lijiang Song; Paul J. Thornalley; Ken Itoh; Masayuki Yamamoto; John D. Hayes

Cruciferous vegetables contain glucosinolates that, after conversion to isothiocyanates (ITC), are capable of inducing cytoprotective genes. We examined whether broccoli seeds can elicit a chemoprotective response in mouse organs and rodent cell lines and investigated whether this response requires nuclear factor-erythroid 2 p45-related factor 2 (Nrf2). The seeds studied contained glucosinolate at 40 mmol/kg, of which 59% comprised glucoiberin, 19% sinigrin, 8% glucoraphanin, and 7% progoitrin. Dietary administration of broccoli seeds to nrf2(+/+) and nrf2(-/-) mice produced a approximately 1.5-fold increase in NAD(P)H:quinone oxidoreductase 1 (NQO1) and glutathione S-transferase (GST) activities in stomach, small intestine, and liver of wild-type mice but not in mutant mice; increased transferase activity was associated with elevated levels of GSTA1/2, GSTA3, and GSTM1/2 subunits. These seeds also increased significantly the level of glutamate cysteine ligase catalytic (GCLC) subunit in the stomach and the small intestine of nrf2(+/+) mice but not nrf2(-/-) mice. An aqueous broccoli seed extract was prepared for treatment of cultured cells that contained ITC at approximately 600 mumol/L, composed of 61% 3-methylsulfinylpropyl ITC, 30% sulforaphane, 4% allyl ITC, and 4% 3-butenyl ITC. This extract induced GSTA1/2, GSTA3, NQO1, and GCLC between 3-fold and 10-fold in mouse Hepa-1c1c7 and rat liver RL-34 cells. The broccoli seed extract affected increases in GSTA3, GSTM1, and NQO1 proteins in nrf2(+/+) mouse embryonic fibroblasts but not in nrf2(-/-) mouse embryonic fibroblasts. These experiments show that broccoli seeds are effective at inducing antioxidant and detoxication proteins, both in vivo and ex vivo, in an Nrf2-dependent manner.


Pharmacology & Therapeutics | 1991

Contribution of the glutathione S-transferases to the mechanisms of resistance to aflatoxin B1

John D. Hayes; David J. Judah; Lesley I. McLellan; Gordon E. Neal

The harmful effects of Aflatoxin B1 (AFB1) are a consequence of it being metabolized to AFB1-8,9-epoxide, a compound that serves as an alkylating agent and mutagen. The toxicity of AFB1 towards different cells varies substantially; sensitivity can change significantly during development, can be modulated by treatment with xenobiotics and is decreased markedly in preneoplastic lesions as well as in tumors. Three types of resistance, namely intrinsic, inducible and acquired, can be identified. The potential resistance mechanisms include low capacity to form AFB1-8,9-epoxide, high detoxification activity, increase in AFB1 efflux from cells and high DNA repair capacity. Circumstantial evidence exists that amongst these mechanisms the glutathione S-transferases, through their ability to detoxify AFB1-8,9-epoxide, play a major role in determining the sensitivity of cells to AFB1.


Biochimica et Biophysica Acta | 1999

Regulation of γ-glutamylcysteine synthetase regulatory subunit (GLCLR) gene expression: identification of the major transcriptional start site in HT29 cells

Diane C. Galloway; David Blake; Lesley I. McLellan

gamma-Glutamylcysteine synthetase (GCS) is of major importance in glutathione homeostasis. The GCS heterodimer is composed of catalytic (heavy subunit, GCSh) and regulatory (light subunit, GCSl) subunits. Regulation of the human GCSl subunit gene (GLCLR) expression was studied as GCSl has a critical role in glutathione synthesis. The minimal basal expression of GLCLR was found to be mediated by a region between nt -205 and -318. The major transcriptional start site in HT29 cells was located within this region at nt -283. A region between nt -411 and -447 was identified as having a potential involvement in the negative regulation of GLCLR expression. In order to study the transcriptional regulation of GCSl by oxidant stress, HepG2 cells were treated with sodium nitroprusside (SNP). SNP (1.5 mM) was found to increase glutathione levels by 2-fold, as well as GCS activity by 6-fold. This is accompanied by a co-ordinate increase in the levels of the both the GCSl and GCSh subunits, each by approximately 2-fold. The transcriptional activity of the GLCLR gene was increased by approximately 2.5-fold in SNP-treated cells.


FEBS Letters | 2000

Molecular cloning of Drosophila γ-glutamylcysteine synthetase by functional complementation of a yeast mutant

Robert D. C. Saunders; Lesley I. McLellan

γ‐Glutamylcysteine synthetase (GCS) catalyses a critical, rate‐limiting step in glutathione synthesis. In this study we describe the isolation and characterisation of a GCS cDNA (pDmGCS4.3.3) from Drosophila melanogaster by functional complementation of a Saccharomyces cerevisiae gsh1 mutant. Expression of pDmGCS4.3.3 in the yeast mutant partially restored glutathione levels and conferred resistance to methylglyoxal. The pDmGCS4.3.3 cDNA was found to be approx. 4.6 kb in length, containing a 2 kb fragment encoding an open reading frame with a high degree of deduced amino acid sequence identity with previously reported GCS sequences. In situ hybridisation revealed that the Drosophila GCS gene maps to 7D6–9 on the X chromosome.


Cancer Research | 2001

The Cap'n'Collar basic leucine zipper transcription factor Nrf2 (NF-E2 p45-related factor 2) controls both constitutive and inducible expression of intestinal detoxification and glutathione biosynthetic enzymes.

Michael McMahon; Ken Itoh; Masayuki Yamamoto; Simon A. Chanas; Colin J. Henderson; Lesley I. McLellan; C. Roland Wolf; Christophe Cavin; John D. Hayes


Biochemical Journal | 1997

REGULATION OF HUMAN GAMMA -GLUTAMYLCYSTEINE SYNTHETASE : CO-ORDINATE INDUCTION OF THE CATALYTIC AND REGULATORY SUBUNITS IN HEPG2 CELLS

Diane C. Galloway; David Blake; A G Shepherd; Lesley I. McLellan


Proceedings of the National Academy of Sciences of the United States of America | 2005

Utility of siRNA against Keap1 as a strategy to stimulate a cancer chemopreventive phenotype

Tim W. P. Devling; Christopher D. Lindsay; Lesley I. McLellan; Michael McMahon; John D. Hayes


Biochemical Society Symposia | 2004

Antioxidant and cytoprotective responses to redox stress

Joanne Mathers; Jennifer A. Fraser; Michael McMahon; Robert D. C. Saunders; John D. Hayes; Lesley I. McLellan

Collaboration


Dive into the Lesley I. McLellan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael McMahon

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge