Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lesley J. Ritter is active.

Publication


Featured researches published by Lesley J. Ritter.


Journal of Cell Science | 2006

Molecular basis of oocyte-paracrine signalling that promotes granulosa cell proliferation.

Robert B. Gilchrist; Lesley J. Ritter; Samu Myllymaa; Noora Kaivo-Oja; Rebecca Dragovic; Theresa E. Hickey; Olli Ritvos; David G. Mottershead

Oocytes regulate follicle growth by secreting paracrine growth factors that act on neighbouring granulosa cells (GCs). Those factors identified to date are mainly members of the transforming growth factor-β (TGFβ) superfamily, but little is known about which specific receptor/signalling system(s) they employ. This study was conducted to determine the requisite pathways utilised by oocytes to promote GC proliferation. We used an established oocyte-secreted mitogen bioassay, where denuded mouse oocytes are co-cultured with mural GCs. Oocytes, growth differentiation factor-9 (GDF9), TGFβ1 and activin-A all promoted GC DNA synthesis, but bone-morphogenetic protein 6 (BMP6) did not. Subsequently, we tested the capacity of various TGFβ superfamily receptor ectodomains (ECD) to neutralise oocyte- or specific growth factor-stimulated GC proliferation. The BMP type-II receptor (BMPR-II) ECD antagonised oocyte and GDF9 bioactivity dose-dependently, but had no or minimal effect on TGFβ1 and activin-A bioactivity, demonstrating its specificity. The TGFβR-II, activinR-IIA and activinR-IIB ECDs all failed to neutralise oocyte- or GDF9-stimulated GC DNA synthesis, whereas they did antagonise the activity of their respective native ligands. An activin receptor-like kinase (ALK) 4/5/7 inhibitor, SB431542, also antagonised both oocyte and GDF9 bioactivity in a dose-dependent manner. Consistent with these findings, oocytes, GDF9 and TGFβ1 all activated SMAD2/3 reporter constructs in transfected GC, and led to phosphorylation of SMAD2 proteins in treated cells. Surprisingly, oocytes did not activate the SMAD1/5/8 pathway in transfected GCs although exogenous BMP6 did. This study indicates that oocyte paracrine factors primarily utilise a similar signalling pathway first identified for GDF9 that employs an unusual combination of TGFβ superfamily receptors, the BMPR-II and a SMAD2/3 stimulatory ALK (4, 5 or 7), for transmitting their mitogenic actions in GC. This cell-signalling pathway may also have relevance in the hypothalamic-pituitary axis and in germ-somatic cell interactions in the testis.


Biology of Reproduction | 2007

Oocyte-Secreted Factor Activation of SMAD 2/3 Signaling Enables Initiation of Mouse Cumulus Cell Expansion

Rebecca Dragovic; Lesley J. Ritter; S. J. Schulz; Fred Amato; Jeremy G. Thompson; David T. Armstrong; Robert B. Gilchrist

Abstract Expansion of the mouse cumulus-oocyte complex (COC) is dependent on oocyte-secreted paracrine factors. Transforming growth factor beta (TGFB) superfamily molecules are prime candidates for the cumulus expansion-enabling factors (CEEFs), and we have recently determined that growth differentiation factor 9 (GDF9) alone is not the CEEF. The aim of this study was to examine oocyte paracrine factors and their signaling pathways that regulate mouse cumulus expansion. Using RT-PCR, oocytes were found to express the two activin subunits, Inhba and Inhbb, and activin A and activin B both enabled FSH-induced cumulus expansion of oocytectomized (OOX) complexes. Follistatin, an activin-binding protein, neutralized activin-induced expansion but had no effect on oocyte-induced expansion. The type I receptors for GDF9 and activin are activin receptor-like kinase 5 (ALK5) and ALK4, respectively, both of which activate the same SMAD 2/3 signaling pathway. We examined the requirement for this signaling system using an ALK 4/5/7 inhibitor, SB-431542. SB-431542 completely ablated FSH-stimulated GDF9-, activin A-, activin B-, and oocyte-induced cumulus expansion. Moreover, SB-431542 also antagonized epidermal growth factor-stimulated, oocyte-induced cumulus expansion. Using real-time RT-PCR, SB-431542 also attenuated GDF9-, activin A-, and oocyte-induced OOX expression of hyaluronan synthase 2, tumor necrosis factor alpha-induced protein 6, prostaglandin synthase 2, and pentraxin 3. This study provides evidence that the CEEF is composed of TGFB superfamily molecules that signal through SMAD 2/3 to enable the initiation of mouse cumulus expansion.


Biology of Reproduction | 2005

Androgens Augment the Mitogenic Effects of Oocyte-Secreted Factors and Growth Differentiation Factor 9 on Porcine Granulosa Cells

Theresa E. Hickey; D.L. Marrocco; Fred Amato; Lesley J. Ritter; Robert J. Norman; Robert B. Gilchrist; David T. Armstrong

Abstract In this study, we test the hypothesis that the growth-promoting action of androgens on granulosa cells requires paracrine signaling from the oocyte. Mural granulosa cells (MGCs) from small antral (1–3 mm) prepubertal pig follicles were cultured in the presence or absence of denuded oocytes (DO) from the same follicles to determine whether mitogenic and/or steroidogenic responses, to combinations of FSH, insulin-like growth factor 1 (IGF1), and dihydrotestosterone (DHT) were influenced by oocyte-secreted factors (OSFs). To further explore the identity of such factors we performed the same experiments, substituting growth differentiation factor 9 (GDF9), a known OSF, for the DO. OSFs and GDF9 both potently enhanced IGF1-stimulated proliferation, and inhibited FSH-stimulated progesterone secretion. Alone, DHT had little effect on DNA synthesis, but significantly enhanced the mitogenic effects of OSFs or GDF9 in the presence of IGF1. Denuded oocytes, GDF9, and DHT independently inhibited FSH-stimulated progesterone secretion, and androgen, together with DO or GDF9, caused the most potent steroidogenic inhibition. Focusing on mitogenic effects, we demonstrate that both natural androgen receptor (AR) agonists, testosterone and DHT, dose-dependently augmented the mitogenic activity of DO or GDF9. Antiandrogen (hydroxyflutamide) treatment, which is used to block androgen receptor activity, opposed the interaction between androgen and GDF9. In conclusion, androgens stimulate porcine MGC proliferation in vitro by potentiating the growth-promoting effects of oocytes or GDF9, via a mechanism that involves the AR. These signaling pathways are likely to be important regulators of folliculogenesis in vivo, and may contribute to the excess follicle growth that is observed in androgen-treated female animals.


Biology of Reproduction | 2004

Immunoneutralization of Growth Differentiation Factor 9 Reveals It Partially Accounts for Mouse Oocyte Mitogenic Activity

Robert B. Gilchrist; Lesley J. Ritter; Mark Cranfield; L.A. Jeffery; Fred Amato; S.J. Scott; Samu Myllymaa; Noora Kaivo-Oja; H. Lankinen; David G. Mottershead; Nigel P. Groome; Olli Ritvos

Abstract Paracrine factors secreted by oocytes play a pivotal role in promoting early ovarian follicle growth and in defining a morphogenic gradient in antral follicles, yet the exact identities of these oocyte factors remain unknown. This study was conducted to determine the extent to which the mitogenic activity of mouse oocytes can be attributed to growth differentiation factor 9 (GDF9). To do this, specific anti-human GDF9 monoclonal antibodies were generated. Based on epitope mapping and bioassays, a GDF9 neutralizing antibody, mAb-GDF9-53, was characterized with very low cross-reactivity with related transforming growth factor (TGF)β superfamily members, including BMP15 (also called GDF9B). Pep-SPOT epitope mapping showed that mAb-GDF9-53 recognizes a short 4-aa sequence, and three-dimensional peptide modeling suggested that this binding motif lies at the C-terminal fingertip of mGDF9. As predicted by sequence alignments and modeling, the antibody detected recombinant GDF9, but not BMP15 in a Western blot and GDF9 protein in oocyte extract and oocyte-conditioned medium. In a mouse mural granulosa cell (MGC) bioassay, mAb-GDF9-53 completely abolished the mitogenic effects of GDF9, but had no effect on TGFβ1 or activin A-stimulated MGC proliferation. An unrelated IgG at the same dose had no effect on GDF9 activity. This GDF9 neutralizing antibody was then tested in an established oocyte-secreted mitogen bioassay, where denuded oocytes cocultured with granulosa cells promote cell proliferation in a dose-dependent manner. The mAb-GDF9-53 dose dependently (0–160 μg/ml) decreased the mitogenic activity of oocytes but only by ∼45% at the maximum dose of mAb. Just 5 μg/ml of mAb-GDF9-53 neutralized 90% of recombinant mGDF9 mitogenic activity, but only 15% of oocyte activity. Unlike mAb-GDF9-53, a TGFβ pan-specific neutralizing antibody did not affect the mitogenic capacity of the oocyte, but completely neutralized TGFβ1-induced DNA synthesis. This study has characterized a specific GDF9 neutralizing antibody. Our data provide the first direct evidence that the endogenous GDF9 protein is an important oocyte-secreted mitogen, but also show that GDF9 accounts for only part of total oocyte bioactivity.


Molecular Human Reproduction | 2012

Signalling pathways mediating specific synergistic interactions between GDF9 and BMP15

David G. Mottershead; Lesley J. Ritter; Robert B. Gilchrist

Growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) are two proteins selectively expressed in the oocyte which are essential for normal fertility. Both of these proteins are members of the transforming growth factor beta (TGF-β) superfamily and as such are produced as pre-proproteins, existing after proteolytic processing as a complex of the respective pro and mature regions. Previous work has shown that these two proteins interact both at the genetic and cellular signalling levels. In this study, our aim was to determine if the purified mature regions of GDF9 and BMP15 exhibit synergistic interactions on granulosa cells and to determine if such interactions are specific to these two proteins. We have used primary cultures of murine granulosa cells and [(3)H]-thymidine incorporation or transcriptional reporter assays as our readouts. We observed clear synergistic interactions between the mature regions of GDF9 and BMP15 when either DNA synthesis or SMAD3 signalling were examined. GDF9/BMP15 synergistic interactions were specific such that neither factor could be replaced by an analogous TGF-β superfamily member. The GDF9/BMP15 synergistic signalling response was inhibited by the SMAD2/3 phosphorylation inhibitor SB431542, as well as inhibition of the mitogen-activated protein kinase or rous sarcoma oncogene (SRC) signalling pathways, but not the nuclear factor kappa B pathway. In this study, we show that purified mature regions of GDF9 and BMP15 synergistically interact in a specific manner which is not dependent on the presence of a pro-region. This synergistic interaction is targeted at the SMAD3 pathway, and is dependent on ERK1/2 and SRC kinase signalling.


Molecular and Cellular Endocrinology | 2003

Comparison of oocyte factors and transforming growth factor-β in the regulation of DNA synthesis in bovine granulosa cells

Robert B. Gilchrist; M.P Morrissey; Lesley J. Ritter; David T. Armstrong

Oocytes are powerful local modulators of follicular cell functions and many of the activities of oocytes are attributed to members of the transforming growth factor-beta (TGF-beta) superfamily. Whilst in the mouse it is known that members of this family are able to mimic many of the effects of oocytes on follicular cells, the relative importance of any of these factors is unknown in bovine follicles. The objectives of this study were to determine if bovine oocytes express and secrete TGF-beta and to compare oocyte-secreted factor(s) to TGF-beta in terms of their capacities to stimulate mural granulosa cell (MGC) DNA synthesis. Bovine ovaries were collected from an abattoir and RNA was extracted from isolated MGC, cumulus cells, cumulus-oocyte complexes and denuded oocytes (DO). Using RT-PCR, all cell types were found to express TGF-beta1 and TGF-beta2 mRNA transcripts. However, no TGF-beta bioactivity could be detected from DO using a sensitive (40 pg/ml) and specific mink lung fibroblast cell bioassay. MGC were cultured with various combinations and doses of TGF-beta2 and DO for 18 h, followed by a 6-h pulse of [3H]-thymidine as an indicator of cellular DNA synthesis. MGC DNA synthesis was stimulated by both TGF-beta2 and DO. However in response to increasing doses of TGF-beta2, [3H]-thymidine levels plateaued at <2-fold above control levels, whereas levels continued to increase over the dose range of DO tested (up to 3.4-fold). Addition of a TGF-beta pan-specific neutralising antibody to MGC cultures eliminated the TGF-beta2-stimulatory effects on DNA synthesis and the TGF-beta2-suppressive effects on progesterone production, but the antibody was unable to neutralise the same responses when induced by DO. These results support a role for TGF-beta1, TGF-beta2 and DO in paracrine/autocrine regulation of bovine granulosa cell function, but indicate that neither TGF-beta1 nor TGF-beta2 can account for the actions of bovine oocytes on granulosa cells.


Journal of Biological Chemistry | 2015

Cumulin, an oocyte-secreted heterodimer of the transforming growth factor-β family, is a potent activator of granulosa cells and improves oocyte quality

David G. Mottershead; Satoshi Sugimura; Sara L. Al-Musawi; Jing-Jie Li; Dulama Richani; Melissa A. White; Georgia A. Martin; Andrew P. Trotta; Lesley J. Ritter; Junyan Shi; Thomas D. Mueller; Craig A. Harrison; Robert B. Gilchrist

Background: Cumulin is a newly identified heterodimeric member of the TGF-β family. Results: Mature cumulin potently stimulates granulosa cell signaling and function, whereas pro-cumulin promotes oocyte quality. Conclusion: Formation of cumulin and its potent actions are likely to be central to oocyte paracrine signaling and mammalian fecundity. Significance: The discovery of cumulin provides unique opportunities to improve female fertility in mammals. Growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) are oocyte-specific growth factors with central roles in mammalian reproduction, regulating species-specific fecundity, ovarian follicular somatic cell differentiation, and oocyte quality. In the human, GDF9 is produced in a latent form, the mechanism of activation being an open question. Here, we produced a range of recombinant GDF9 and BMP15 variants, examined their in silico and physical interactions and their effects on ovarian granulosa cells (GC) and oocytes. We found that the potent synergistic actions of GDF9 and BMP15 on GC can be attributed to the formation of a heterodimer, which we have termed cumulin. Structural modeling of cumulin revealed a dimerization interface identical to homodimeric GDF9 and BMP15, indicating likely formation of a stable complex. This was confirmed by generation of recombinant heterodimeric complexes of pro/mature domains (pro-cumulin) and covalent mature domains (cumulin). Both pro-cumulin and cumulin exhibited highly potent bioactivity on GC, activating both SMAD2/3 and SMAD1/5/8 signaling pathways and promoting proliferation and expression of a set of genes associated with oocyte-regulated GC differentiation. Cumulin was more potent than pro-cumulin, pro-GDF9, pro-BMP15, or the two combined on GC. However, on cumulus-oocyte complexes, pro-cumulin was more effective than all other growth factors at notably improving oocyte quality as assessed by subsequent day 7 embryo development. Our results support a model of activation for human GDF9 dependent on cumulin formation through heterodimerization with BMP15. Oocyte-secreted cumulin is likely to be a central regulator of fertility in mono-ovular mammals.


Journal of Cell Science | 2010

Growth differentiation factor 9 signaling requires ERK1/2 activity in mouse granulosa and cumulus cells

Maxime Sasseville; Lesley J. Ritter; Thao Nguyen; Fang Liu; David G. Mottershead; Darryl L. Russell; Robert B. Gilchrist

Ovarian folliculogenesis is driven by the combined action of endocrine cues and paracrine factors. The oocyte secretes powerful mitogens, such as growth differentiation factor 9 (GDF9), that regulate granulosa cell proliferation, metabolism, steroidogenesis and differentiation. This study investigated the role of the epidermal growth factor receptor (EGFR)–extracellular signal-regulated kinase 1 and 2 (ERK1/2; also known as MAPK3/1) signaling pathway on GDF9 action on granulosa cells. Results show that mitogenic action of the oocyte is prevented by pharmacological inhibition of the EGFR–ERK1/2 pathway. Importantly, EGFR–ERK1/2 activity as well as rous sarcoma oncogene family kinases (SFK) are required for signaling through SMADs, mediating GDF9, activin A and TGFβ1 mitogenic action in granulosa cells. GDF9 could not activate ERK1/2 or affect EGF-stimulated ERK1/2 in granulosa cells. However, induction of the SMAD3-specific CAGA reporter by GDF9 in granulosa cells required active EGFR, SFKs and ERK1/2 as did GDF9-responsive gene expression. Finally, the EGFR–SFKs–ERK1/2 pathway was shown to be required for the maintenance of phosphorylation of the SMAD3 linker region. Together our results suggest that receptivity of granulosa cells to oocyte-secreted factors, including GDF9, is regulated by the level of activation of the EGFR and resulting ERK1/2 activity, through the requisite permissive phosphorylation of SMAD3 in the linker region. Our results indicate that oocyte-secreted TGFβ-like ligands and EGFR–ERK1/2 signaling are cooperatively required for the unique granulosa cell response to the signal from oocytes mediating granulosa cell survival and proliferation and hence the promotion of follicle growth and ovulation.


Molecular Human Reproduction | 2014

Amphiregulin co-operates with bone morphogenetic protein 15 to increase bovine oocyte developmental competence: effects on gap junction-mediated metabolite supply

Satoshi Sugimura; Lesley J. Ritter; Melanie L. Sutton-McDowall; David G. Mottershead; Jeremy G. Thompson; Robert B. Gilchrist

This study assessed the participation of amphiregulin (AREG) and bone morphogenetic protein 15 (BMP15) during maturation of bovine cumulus-oocyte complexes (COCs) on cumulus cell function and their impact on subsequent embryo development. AREG treatment of COCs enhanced blastocyst formation and quality only when in the presence of BMP15. Expression of hyaluronan synthase 2 was enhanced by follicle-stimulating hormone (FSH) but not by AREG, which was reflected in the level of cumulus expansion. Although both FSH and AREG stimulated glycolysis, AREG-treated COCs had higher glucose consumption, lactate production and ratio of lactate production to glucose uptake. Autofluorescence levels in oocytes, indicative of NAD(P)H and FAD(++), were increased with combined AREG and BMP15 treatment of COCs. In contrast, these treatments did not alter autofluorescence levels when cumulus cells were removed from oocytes, even in the presence of other COCs, suggesting that oocyte-cumulus gap-junctional communication (GJC) is required. FSH contributed to maintaining GJC for an extended period of time. Remarkably, BMP15 was equally effective at maintaining GJC even in the presence of AREG. Hence, AREG stimulation of COC glycolysis and BMP15 preservation of GJC may facilitate efficient transfer of metabolites from cumulus cells to the oocyte thereby enhancing oocyte developmental competence. These results have implications for improving in vitro oocyte maturation systems.


Human Reproduction | 2013

Heparin and cAMP modulators interact during pre-in vitro maturation to affect mouse and human oocyte meiosis and developmental competence

Hai-tao Zeng; Zi Ren; L. Guzman; X. Wang; Melanie L. Sutton-McDowall; Lesley J. Ritter; Michel De Vos; Johan Smitz; Jeremy G. Thompson; Robert B. Gilchrist

STUDY QUESTION Does heparin ablate the advantageous effects of cyclic adenosine mono-phosphate (cAMP) modulators during pre-in vitro maturation (IVM) and have a deleterious effect in standard oocyte IVM? SUMMARY ANSWER Heparin interrupts energy metabolism and meiotic progression and adversely affects subsequent development of oocytes under conditions of elevated cAMP levels in cumulus-oocyte complexes (COCs) after pre-IVM treatment with forskolin. WHAT IS KNOWN ALREADY In animal IVM studies, artificial regulation of meiotic resumption by cAMP-elevating agents improves subsequent oocyte developmental competence. Heparin has no effect on spontaneous, FSH- or epidermal growth factor (EGF)-stimulated meiotic maturation. STUDY DESIGN, SIZE, DURATION An in vitro cross-sectional study was conducted using immature mouse and human COCs. Depending on individual experimental design, COCs were treated during pre-IVM with or without heparin, in the presence or absence of forskolin and/or 3-isobutyl-1-methylxanthine (IBMX), and then COC function was assessed by various means. PARTICIPANTS/MATERIALS, SETTINGS, METHODS Forty-two women with polycystic ovaries (PCOs) or polycystic ovarian syndrome (PCOS) donated COCs after oocyte retrieval in a non-hCG-triggered IVM cycle. COCs were collected in pre-IVM treatments and then cultured for 40 h and meiotic progression was assessed. COCs from 21- to 24-day-old female CBA F1 mice were collected 46 h after stimulation with equine chorionic gonadotrophin. Following treatments, COCs were checked for meiotic progression. Effects on mouse oocyte metabolism were measured by assessing oocyte mitochondrial membrane potential using JC-1 staining and oocyte ATP content. Post-IVM mouse oocyte developmental competence was assessed by in vitro fertilization and embryo production. Blastocyst quality was evaluated by differential staining of inner cell mass (ICM) and trophectoderm (TE) layers. MAIN RESULTS AND THE ROLE OF CHANCE In the absence of heparin in pre-IVM culture, the addition of cAMP modulators did not affect human oocyte MII competence after 40 h. In standard IVM, heparin supplementation in pre-IVM did not affect MII competence; however, when heparin was combined with cAMP modulators, MII competence was significantly reduced from 65 to 15% (P < 0.05). In mouse experiments, heparin alone in pre-IVM significantly delayed germinal vesicle breakdown (GVBD) so that fewer GVBDs were observed at 0 and 1 h of IVM (P < 0.05), but not by 2 or 3 h of IVM. Combined treatment with IBMX and forskolin in the pre-IVM medium produced a large delay in GVBD such that no COCs exhibited GVBD in the first 1 h of IVM, and the addition of heparin in pre-IVM further significantly delayed the progression of GVBD (P < 0.05), in a dose-dependent manner (P < 0.01). Combined IBMX and forskolin treatment of mouse COCs during pre-IVM significantly increased mitochondrial membrane potential and ATP production in the oocyte at the end of pre-IVM (P < 0.05), and significantly improved fertilization, embryo development and quality (P < 0.05). However, heparin abolished the IBMX + forskolin-stimulated increase in mitochondrial membrane potential and ATP production (P < 0.05), and adversely affected embryonic cleavage, development rates and embryo quality (P < 0.05). This latter adverse combinational effect was negated when mouse COCs were collected in heparin and IBMX for 15 min, washed and then cultured for 45 min in IBMX and forskolin without heparin. LIMITATION, REASONS FOR CAUTION Experiments in mice found that heparin ablation of the advantageous effects of cAMP modulators during pre-IVM was associated with altered oocyte metabolism, but the mechanism by which heparin affects metabolism remains unclear. WIDER IMPLICATIONS OF THE FINDINGS This study has revealed a novel and unexpected interaction between heparin and cAMP modulators in pre-IVM in immature mouse and human oocytes, and established a means to collect oocytes using heparin while modulating oocyte cAMP to improve developmental potential.

Collaboration


Dive into the Lesley J. Ritter's collaboration.

Top Co-Authors

Avatar

Robert B. Gilchrist

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fred Amato

University of Adelaide

View shared research outputs
Top Co-Authors

Avatar

Satoshi Sugimura

Tokyo University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Craig A. Harrison

Hudson Institute of Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge