Lesley Rhodes
Cawthron Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lesley Rhodes.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Griet Casteleyn; Frederik Leliaert; Thierry Backeljau; Ann-Eline Debeer; Yuichi Kotaki; Lesley Rhodes; Nina Lundholm; Koen Sabbe; Wim Vyverman
The role of geographic isolation in marine microbial speciation is hotly debated because of the high dispersal potential and large population sizes of planktonic microorganisms and the apparent lack of strong dispersal barriers in the open sea. Here, we show that gene flow between distant populations of the globally distributed, bloom-forming diatom species Pseudo-nitzschia pungens (clade I) is limited and follows a strong isolation by distance pattern. Furthermore, phylogenetic analysis implies that under appropriate geographic and environmental circumstances, like the pronounced climatic changes in the Pleistocene, population structuring may lead to speciation and hence may play an important role in diversification of marine planktonic microorganisms. A better understanding of the factors that control population structuring is thus essential to reveal the role of allopatric speciation in marine microorganisms.
Toxicon | 2011
Lesley Rhodes
The dinoflagellate genus, Ostreopsis Schmidt, has an increasingly global distribution. It blooms in temperate to tropical coastal waters, and toxic species are present in all regions in which the genus has been recorded. The distribution has increased markedly in the last decade and associated illnesses have also increased. These trends are likely to continue.
New Zealand Journal of Marine and Freshwater Research | 2000
Lesley Rhodes; Janet Adamson; Toshiyuki Suzuki; Lyn R. Briggs; Ian Garthwaite
Abstract Ostreopsis siamensis and Coolia monotis (Ostreopsidaceae) are newly recognised additions to New Zealands toxic marine microflora and occur epiphytically on seaweeds throughout subtropical New Zealand. O. siamensis “blooms” during summer, becoming freely motile; it tolerates temperatures of 15–25°C and salinities of 28–34 ppt. C. monotis also occurs in sediments in Nelson/ Marlborough and Stewart Island, at 10–30°C and salinities of 20–34 ppt. O. siamensis from Rangiputa, Northland, produced activity equivalent to ≤0.3 pg cell∼’ of palytoxin as measured using a haemolysis‐neutralisation assay, and cell extracts killed mice by intraperitoneal injection. Extracts of oysters fed with O. siamensis did not kill mice. C. monotis, from Rangiputa, produced compounds in extracts of cells and of culture supernatant which were also toxic to mice and which are currently being characterised. C. monotis caused positive sodium channel activity in neuroblastoma assays; O. siamensis was cytotoxic, and irreversibly suppressed cell firing in hippocampal brain slices. Lectin probes differentiated the two species, suggesting differential sugar moieties at their cell surfaces.
New Zealand Journal of Marine and Freshwater Research | 2002
Lesley Rhodes; Neale R. Towers; Lyn R. Briggs; Rex Munday; Janet Adamson
Abstract Greenshell™ mussels (Perna canaliculus Gmelin), scallops (Pecten novaezealandiae Reeve), and Pacific oysters (Crassostrea gigas Thunberg) were fed with a New Zealand strain of mass cultured Ostreopsis siamensis Schmidt (for 27 and 84 h and with 1.5 × 106 or 8.6 × 106 cells, respectively) under laboratory conditions. The microalgal cells contained 0.3 pg palytoxin equivalents cell–1 (as determined by the haemolysis neutralisation assay (HNA) of Bignami (1993)) and extracts of these cells were toxic to mice after intraperitoneal injection. No palytoxin‐like material was detected either in the hepatopancreas or the muscle and roe of mussels fed O. siamensis. Oysters contained detectable amounts of toxin in hepatopancreas muscle, and roe while higher concentrations were present in the hepatopancreas of scallops. Extracts of control shellfish (tested biotoxin free and not fed O. siamensis) were toxic to mice, and there was no definitive evidence that feeding shellfish with O. siamensis at the levels employed in the present experiment increased the toxicity of shellfish tissue extracts to mice.
PLOS ONE | 2012
Russell J. S. Orr; Shauna A. Murray; Anke Stüken; Lesley Rhodes; Kjetill S. Jakobsen
The dinoflagellates are a diverse lineage of microbial eukaryotes. Dinoflagellate monophyly and their position within the group Alveolata are well established. However, phylogenetic relationships between dinoflagellate orders remain unresolved. To date, only a limited number of dinoflagellate studies have used a broad taxon sample with more than two concatenated markers. This lack of resolution makes it difficult to determine the evolution of major phenotypic characters such as morphological features or toxin production e.g. saxitoxin. Here we present an improved dinoflagellate phylogeny, based on eight genes, with the broadest taxon sampling to date. Fifty-five sequences for eight phylogenetic markers from nuclear and mitochondrial regions were amplified from 13 species, four orders, and concatenated phylogenetic inferences were conducted with orthologous sequences. Phylogenetic resolution is increased with addition of support for the deepest branches, though can be improved yet further. We show for the first time that the characteristic dinoflagellate thecal plates, cellulosic material that is present within the sub-cuticular alveoli, appears to have had a single origin. In addition, the monophyly of most dinoflagellate orders is confirmed: the Dinophysiales, the Gonyaulacales, the Prorocentrales, the Suessiales, and the Syndiniales. Our improved phylogeny, along with results of PCR to detect the sxtA gene in various lineages, allows us to suggest that this gene was probably acquired separately in Gymnodinium and the common ancestor of Alexandrium and Pyrodinium and subsequently lost in some descendent species of Alexandrium.
PLOS ONE | 2011
Shinya Sato; Tomohiro Nishimura; Keita Uehara; Hiroshi Sakanari; Wittaya Tawong; Naohito Hariganeya; Kirsty F. Smith; Lesley Rhodes; Takeshi Yasumoto; Yosuke Taira; Shoichiro Suda; Haruo Yamaguchi; Masao Adachi
Background A dinoflagellate genus Ostreopsis is known as a potential producer of Palytoxin derivatives. Palytoxin is the most potent non-proteinaceous compound reported so far. There has been a growing number of reports on palytoxin-like poisonings in southern areas of Japan; however, the distribution of Ostreopsis has not been investigated so far. Morphological plasticity of Ostreopsis makes reliable microscopic identification difficult so the employment of molecular tools was desirable. Methods/Principal Finding In total 223 clones were examined from samples mainly collected from southern areas of Japan. The D8–D10 region of the nuclear large subunit rDNA (D8–D10) was selected as a genetic marker and phylogenetic analyses were conducted. Although most of the clones were unable to be identified, there potentially 8 putative species established during this study. Among them, Ostreopsis sp. 1–5 did not belong to any known clade, and each of them formed its own clade. The dominant species was Ostreopsis sp. 1, which accounted for more than half of the clones and which was highly toxic and only distributed along the Japanese coast. Comparisons between the D8–D10 and the Internal Transcribed Spacer (ITS) region of the nuclear rDNA, which has widely been used for phylogenetic/phylogeographic studies in Ostreopsis, revealed that the D8–D10 was less variable than the ITS, making consistent and reliable phylogenetic reconstruction possible. Conclusions/Significance This study unveiled a surprisingly diverse and widespread distribution of Japanese Ostreopsis. Further study will be required to better understand the phylogeography of the genus. Our results posed the urgent need for the development of the early detection/warning systems for Ostreopsis, particularly for the widely distributed and strongly toxic Ostreopsis sp. 1. The D8–D10 marker will be suitable for these purposes.
Toxicon | 2010
Paul McNabb; Andrew I. Selwood; Rex Munday; Susanna A. Wood; David I. Taylor; Lincoln MacKenzie; Roel van Ginkel; Lesley Rhodes; Chris Cornelisen; Kevin Heasman; Patrick T. Holland; Caleb King
Investigations into a series of dog poisonings on beaches in Auckland, North Island, New Zealand, resulted in the identification of tetrodotoxin (TTX) in the grey side-gilled sea slug, Pleurobranchaea maculata. The levels of TTX in P. maculata, assayed by liquid chromatography-mass spectrometry (LC-MS) ranged from 91 to 850 mg kg(-1) with a median level of 365 mg kg(-1) (n = 12). In two of the dog poisoning cases, vomit and gastrointestinal contents were found to contain TTX. Adult P. maculata were maintained in aquaria for several weeks. Levels of TTX decreased only slightly with time. While in the aquaria, P. maculata spawned, with each individual producing 2-4 egg masses. The egg masses and 2-week old larvae also contained TTX. Tests for other marine toxins were negative and no other organisms from the area contained TTX. This is the first time TTX has been identified in New Zealand and the first detection of TTX in an opisthobranch.
Natural Toxins | 1998
Lesley Rhodes; Chris Scholin; Ian Garthwaite
Domoic acid (DA) was first detected in shellfish in New Zealand after the implementation of a comprehensive biotoxin monitoring programme for amnesic, paralytic, diarrhetic and neurotoxic shellfish toxins, following a suspected neurotoxic shellfish poisoning (NSP) event in early 1993. Both phytoplankton monitoring and shellfish flesh testing programmes have led to an extensive database which has helped link species of Pseudo-nitzschia to specific DA outbreaks. In 1994, P. pungens and P. turgidula were associated with DA contamination of shellfish, and cultured isolates of these species proved to be toxin producers. During 1996 the use of species-specific ribosomal RNA (rRNA)-targeted oligonucleotide probes and DA immunoassays led to the discovery of toxin production by P. fraudulenta, and showed the nontoxic P. heimii to be a major bloom former. Pseudo-nitzschia delicatissima, P. pseudodelicatissima and P. multiseries, also identified using rRNA-targeted probes, have been linked to DA contamination of New Zealand shellfish; P. australis is the main cause of DA in scallops. The relative amnesic shellfish poisoning (ASP) risk associated with different species, largely determined by DA immunoassays of cultured isolates, is now used by some regulators to refine risk assessments. Species identification is therefore vital so that shellfish growers, and health and industry officials, can make safe and economically sound harvesting decisions. The development and field trialling of DNA probes is proving invaluable in this context.
Toxicon | 2010
Lesley Rhodes; Kirsty F. Smith; Rex Munday; A Selwood; Paul McNabb; Patrick T. Holland; Marie-Yasmine Dechraoui Bottein
Dinoflagellate species isolated from the green calcareous seaweed, Halimeda sp. J.V. Lamouroux, growing in Rarotongan lagoons, included Gambierdiscus australes Faust & Chinain, Coolia monotis Meunier, Amphidinium carterae Hulburth, Prorocentrum lima (Ehrenberg) Dodge, P. cf. maculosum Faust and species in the genus Ostreopsis Schmidt. Isolates were identified to species level by scanning electron microscopy and/or DNA sequence analysis. Culture extracts of G. australes isolate CAWD149 gave a response of 0.04 pg P-CTX-1 equiv. per cell by an N2A cytotoxicity assay (equivalent to ca 0.4 pg CTX-3C cell(-1)). However, ciguatoxins were not detected by LC-MS/MS. Partitioned fractions of the cell extracts potentially containing maitotoxin were found to be very toxic to mice after intraperitoneal (i.p.) injection. A. carterae was also of interest as extracts of mass cultures caused respiratory paralysis in mice at high doses, both by i.p. injection and by oral administration. The Rarotongan isolate fell into a different clade to New Zealand A. carterae isolates, based on DNA sequence analysis, and also had a different toxin profile. As A. carterae co-occurred with G. australes, it may contribute to human poisonings attributed to CTX and warrants further investigation. A crude extract of C. monotis was of low toxicity to mice by i.p. injection, and an extract of Ostreopsis sp. was negative in the palytoxin haemolysis neutralisation assay.
Tetrahedron | 2001
Toshihiro Houdai; Shigeru Matsuoka; Michio Murata; Masayuki Satake; Sayo Ota; Yasukatsu Oshima; Lesley Rhodes
Abstract Amphidinols, which are polyketide metabolites chiefly comprising a long linear chain with polyhydroxyl groups and polyolefins, are produced by marine dinoflagellates Amphidinium carterae and A. klebsii. The acetate incorporation experiments of amphidinols 2, 3 and 4 revealed that they are built up with five regular C2-elongation sequences, which are separated by continuous acetate-methyl derived carbons. The findings support the C1-deletion mechanism from the regular sequence, which could be accounted for either by Favorski-type reaction or by Tiffeneau–Demjanov rearrengement.