Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leslie M. Loew is active.

Publication


Featured researches published by Leslie M. Loew.


Bioinformatics | 2003

The systems biology markup language (SBML) : a medium for representation and exchange of biochemical network models

Michael Hucka; Andrew Finney; Herbert M. Sauro; Hamid Bolouri; John C. Doyle; Hiroaki Kitano; Adam P. Arkin; Benjamin J. Bornstein; Dennis Bray; Athel Cornish-Bowden; Autumn A. Cuellar; S. Dronov; E. D. Gilles; Martin Ginkel; Victoria Gor; Igor Goryanin; W. J. Hedley; T. C. Hodgman; J.-H.S. Hofmeyr; Peter Hunter; Nick Juty; J. L. Kasberger; A. Kremling; Ursula Kummer; N. Le Novere; Leslie M. Loew; D. Lucio; Pedro Mendes; E. Minch; Eric Mjolsness

MOTIVATION Molecular biotechnology now makes it possible to build elaborate systems models, but the systems biology community needs information standards if models are to be shared, evaluated and developed cooperatively. RESULTS We summarize the Systems Biology Markup Language (SBML) Level 1, a free, open, XML-based format for representing biochemical reaction networks. SBML is a software-independent language for describing models common to research in many areas of computational biology, including cell signaling pathways, metabolic pathways, gene regulation, and others. AVAILABILITY The specification of SBML Level 1 is freely available from http://www.sbml.org/


Nature Biotechnology | 2003

Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms

Paul J. Campagnola; Leslie M. Loew

Although the nonlinear optical effect known as second-harmonic generation (SHG) has been recognized since the earliest days of laser physics and was demonstrated through a microscope over 25 years ago, only in the past few years has it begun to emerge as a viable microscope imaging contrast mechanism for visualization of cell and tissue structure and function. Only small modifications are required to equip a standard laser-scanning two-photon microscope for second-harmonic imaging microscopy (SHIM). Recent studies of the three-dimensional in vivo structures of well-ordered protein assemblies, such as collagen, microtubules and muscle myosin, are beginning to establish SHIM as a nondestructive imaging modality that holds promise for both basic research and clinical pathology. Thus far the best signals have been obtained in a transmitted light geometry that precludes in vivo measurements on large living animals. This drawback may be addressed through improvements in the collection of SHG signals via an epi-illumination microscope configuration. In addition, SHG signals from certain membrane-bound dyes have been shown to be highly sensitive to membrane potential. Although this indicates that SHIM may become a valuable tool for probing cell physiology, the small signal size would limit the number of photons that could be collected during the course of a fast action potential. Better dyes and optimized microscope optics could ultimately lead to the imaging of neuronal electrical activity with SHIM.


Biophysical Journal | 1988

Membrane potential can be determined in individual cells from the nernstian distribution of cationic dyes

Benjamin Ehrenberg; Valerie Montana; Mei-de Wei; Joseph P. Wuskell; Leslie M. Loew

The distribution of a selection of cationic fluorescent dyes can be used to measure the membrane potential of individual cells with a microfluorometer. The essential attributes of these dyes include membrane permeability, low membrane binding, spectral properties which are insensitive to environment, and, of course, strong fluorescence. A series of dyes were screened on HeLa cells for their ability to meet these criteria and several commercially available dyes were found to be satisfactory. In addition, two new dyes were synthesized for this work by esterification of tetramethyl rhodamine. The analysis of the measured fluorescent intensities requires correction for fluorescence collected from outside the plane of focus of the cell and for nonpotentiometric binding of the dye. The measurements and analysis were performed on three different cell types for which there exists a body of literature on membrane potential; the potentials determined in this work were always within the range of literature values. The rhodamine esters are nontoxic, highly fluorescent dyes which do not form aggregates or display binding-dependent changes in fluorescence efficiency. Thus, their reversible accumulation is quantitatively related to the contrast between intracellular and extracellular fluorescence and allows membrane potentials in individual cells to be continuously monitored.


Biophysical Journal | 1999

High-resolution nonlinear optical imaging of live cells by second harmonic generation.

Paul J. Campagnola; Mei-de Wei; Aaron Lewis; Leslie M. Loew

By adapting a laser scanning microscope with a titanium sapphire femtosecond pulsed laser and transmission optics, we are able to produce live cell images based on the nonlinear optical phenomenon of second harmonic generation (SHG). Second harmonic imaging (SHIM) is an ideal method for probing membranes of living cells because it offers the high resolution of nonlinear optical microscopy with the potential for near-total avoidance of photobleaching and phototoxicity. The technique has been implemented on three cell lines labeled with membrane-staining dyes that have large nonlinear optical coefficients. The images can be obtained within physiologically relevant time scales. Both achiral and chiral dyes were used to compare image formation for the case of single- and double-leaflet staining, and it was found that chirality plays a significant role in the mechanism of contrast generation. It is also shown that SHIM is highly sensitive to membrane potential, with a depolarization of 25 mV resulting in an approximately twofold loss of signal intensity.


Trends in Biotechnology | 2001

The Virtual cell : a software environment for computational cell biology

Leslie M. Loew; James C. Schaff

The newly emerging field of computational cell biology requires software tools that address the needs of a broad community of scientists. Cell biological processes are controlled by an interacting set of biochemical and electrophysiological events that are distributed within complex cellular structures. Computational modeling is familiar to researchers in fields such as molecular structure, neurobiology and metabolic pathway engineering, and is rapidly emerging in the area of gene expression. Although some of these established modeling approaches can be adapted to address problems of interest to cell biologists, relatively few software development efforts have been directed at the field as a whole. The Virtual Cell is a computational environment designed for cell biologists as well as for mathematical biologists and bioengineers. It serves to aid the construction of cell biological models and the generation of simulations from them. The system enables the formulation of both compartmental and spatial models, the latter with either idealized or experimentally derived geometries of one, two or three dimensions.


Protein Science | 2009

Construction of a fluorescent biosensor family

Robert de Lorimier; Jeff Smith; Mary A. Dwyer; Loren L. Looger; Kevin M. Sali; Chad D. Paavola; Shahir S. Rizk; Shamil Sadigov; David W. Conrad; Leslie M. Loew; Homme W. Hellinga

Bacterial periplasmic binding proteins (bPBPs) are specific for a wide variety of small molecule ligands. bPBPs undergo a large, ligand‐mediated conformational change that can be linked to reporter functions to monitor ligand concentrations. This mechanism provides the basis of a general system for engineering families of reagentless biosensors that share a common physical signal transduction functionality and detect many different analytes. We demonstrate the facility of designing optical biosensors based on fluorophore conjugates using 8 environmentally sensitive fluorophores and 11 bPBPs specific for diverse ligands, including sugars, amino acids, anions, cations, and dipeptides. Construction of reagentless fluorescent biosensors relies on identification of sites that undergo a local conformational change in concert with the global, ligand‐mediated hinge‐bending motion. Construction of cysteine mutations at these locations then permits site‐specific coupling of environmentally sensitive fluorophores that report ligand binding as changes in fluorescence intensity. For 10 of the bPBPs presented in this study, the three‐dimensional receptor structure was used to predict the location of reporter sites. In one case, a bPBP sensor specific for glutamic and aspartic acid was designed starting from genome sequence information and illustrates the potential for discovering novel binding functions in the microbial genosphere using bioinformatics.


Biophysical Journal | 1989

Simultaneous imaging of cell and mitochondrial membrane potentials

D.L. Farkas; Mei-de Wei; P. Febbroriello; John H. Carson; Leslie M. Loew

The distribution of charged membrane-permeable molecular probes between intracellular organelles, the cytoplasm, and the outside medium is governed by the relative membrane electrical potentials of these regions through coupled equilibria described by the Nernst equation. A series of highly fluorescent cationic dyes of low membrane binding and toxicity (Ehrenberg, B., V. Montana, M.-D. Wei, J. P. Wuskell, and L. M. Loew, 1988. Biophys. J. 53:785-794) allows the monitoring of these equilibria through digital imaging video microscopy. We employ this combination of technologies to assess, simultaneously, the membrane potentials of cells and of their organelles in situ. We describe the methodology and optimal conditions for such measurements, and apply the technique to concomitantly follow, with good time resolution, the mitochondrial and plasma membrane potentials in several cultured cell lines. The time course of variations induced by chemical agents (ionophores, uncouplers, electron transport, and energy transfer inhibitors) in either or both these potentials is easily quantitated, and in accordance with mechanistic expectations. The methodology should therefore be applicable to the study of more subtle and specific, biologically induced potential changes in cells.


Biophysical Journal | 1986

Optical imaging of cell membrane potential changes induced by applied electric fields

David A. Gross; Leslie M. Loew; Webb Ww

We report the first imaging of the spatial distributions of transmembrane potential changes induced in nonexcitable cells by applied external electric fields. These changes are indicated by the fluorescence intensity of a charge-shift potentiometric dye incorporated in the cell plasma membrane and measured by digital intensified video microscopy.


Biophysical Journal | 1994

Dual-wavelength ratiometric fluorescence measurement of the membrane dipole potential.

Eitan Gross; Richard S. Bedlack; Leslie M. Loew

The electrostatic potentials associated with cell membranes include the transmembrane potential (delta psi), the surface potential (psi s), and the dipole potential (psi D). psi D, which originates from oriented dipoles at the surface of the membrane, rises steeply just within the membrane to approximately 300 mV. Here we show that the potential-sensitive fluorescent dye 1-(3-sulfonatopropyl)-4-[beta[2-(di-n-octylamino)-6- naphthyl]vinyl]pyridinium betaine (di-8-ANEPPS) can be used to measure changes in the intramembrane dipole potential. Increasing the content of cholesterol and 6-ketocholestanol (KC), which are known to increase psi D in the bilayer, results in an increase in the ratio, R, of the dye fluorescence excited at 440 nm to that excited at 530 nm in a lipid vesicle suspension; increasing the content of phloretin, which lowers psi D, decreases R. Control experiments show that the ratio is insensitive to changes in the membranes microviscosity. The lack of an isosbestic point in the fluorescence excitation and emission spectra of the dye at various concentrations of KC and phloretin argues against 1:1 chemical complexation between the dye and KC or phloretin. The macromolecular nonionic surfactant Pluronic F127 catalyzes the insertion of KC and phloretin into lipid vesicle and cell membranes, permitting convenient and controlled modulation of dipole potential. The sensitivity of R to psi D is 10-fold larger than to delta psi, whereas it is insensitive to changes in psi S. This can be understood in terms of the location of the dye chromophore with respect to the electric field profile associated with each of these potentials. These results suggest that the gradient in dipole potential occurs over a span s5 A, a short distance below the membrane-water interface. These approaches are easily adaptable to study the influence of dipole potentials on cell membrane physiology.


Biophysical Journal | 1993

Imaging in five dimensions: time-dependent membrane potentials in individual mitochondria.

Leslie M. Loew; R.A. Tuft; W. Carrington; F.S. Fay

Because of its importance in the chemiosmotic theory, mitochondrial membrane potential has been the object of many investigations. Significantly, however, quantitative data on how energy transduction might be regulated or perturbed by the physiological state of the cell has only been gathered via indirect studies on isolated mitochondrial suspensions; quantitative studies on individual mitochondria in situ have not been possible because of their small size, their intrinsic motility, and the absence of appropriate analytical reagents. In this article, we combine techniques for rapid, high resolution, quantitative three-dimensional imaging microscopy and mathematical modeling to determine accurate distributions of a potentiometric fluorescent probe between the cytosol and individual mitochondria inside a living cell. Analysis of this distribution via the Nernst equation permits assignment of potentials to each of the imaged mitochondrial membranes. The mitochondrial membrane potentials are distributed over a narrow range centered at -150 mV within the neurites of differentiated neuroblastoma cells. We find that the membrane potential of a single mitochondrion is generally remarkably stable over times of 40-80 s, but significant fluctuations can occasionally be seen. The motility of individual mitochondria is not directly correlated to membrane potential, but mitochondria do become immobile after prolonged treatment with respiratory inhibitors or uncouplers. Thus, three spatial dimensions, a key physiological parameter, and their changes over time are all quantitated for objects at the resolution limit of light microscopy. The methods described may be readily extended to permit investigations of how mitochondrial function is integrated with other processes in the intact cell.

Collaboration


Dive into the Leslie M. Loew's collaboration.

Top Co-Authors

Avatar

Ping Yan

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

James C. Schaff

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Joseph P. Wuskell

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leonardo Sacconi

European Laboratory for Non-Linear Spectroscopy

View shared research outputs
Top Co-Authors

Avatar

Aaron Lewis

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ion I. Moraru

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge