Lester J. Pérez
Dalhousie University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lester J. Pérez.
Infection, Genetics and Evolution | 2012
Lester J. Pérez; Heidy Díaz de Arce; Carmen L. Perera; Rosa Rosell; María Teresa Frías; María Irian Percedo; Joan Tarradas; Patricia Domínguez; José I. Núñez; Llilianne Ganges
In Cuba, classical swine fever (CSF) has become an endemic disease with several outbreaks each year, despite the implemented vaccination program. Interestingly, a trend towards a milder presentation of the disease has been observed among the animals during the last years. This study aimed to assess positive selection pressure acting on partial E2 gene of CSF viruses to gain insights into the mechanisms governing virulence and the driving forces of classical swine fever virus (CSFV) evolution in swine populations under regular vaccination. Selection pressure analysis were performed to detect positive selection acting on a particular lineage as well as among sites of the E2-B/C-domain of CSFV nucleotide sequences, reported in a previous study and in the present work, several models, available in the CODEML module of PAML 4.3, were used. In addition, a representative Cuban CSF isolate was assessed in an experimental infection trial for their clinical virulence in order to expand the knowledge regarding CSF viruses circulating in pig populations. The viral genomes sequenced in this study were grouped in a defined cluster within the genotype 1.2, as it has been reported previously for Cuban CSF viruses. The selection pressure analysis didnt find evidence of positive selection (dN/dS of>1) along any branch. The positive selective pressure analysis estimated six new sites under positive selection on E2 partial gene analysed. Besides, the clinical manifestations of the CSF-disease were related mainly to a mild course of the illness. The high number of positively selected sites suggests that these changes could be associated to viral evasion of the host-immune response. These observations highlight a possible association between escape viral variants and the alterations observed in the virulence and pathogenesis of the virus. Therefore, while the vaccination programs have not led to a genotype change, alterations in virulence were suggested to arise.
Journal of Virological Methods | 2011
Lester J. Pérez; Heidy Díaz de Arce; Joan Tarradas; Rosa Rosell; Carmen L. Perera; Marta Muñoz; María Teresa Frías; José I. Núñez; Llilianne Ganges
Classical swine fever is a highly contagious viral disease that causes significant economic losses in pig production on a global scale. The rapid dissemination of the virus and the variability of the clinical signs merit the development of swift and accurate classical swine fever virus (CSFV) detection methods, which can assist in disease control. The development and evaluation of a novel quantitative real-time RT-PCR assay for CSFV detection, based on SYBR Green coupled to melting curve analysis, is described. The analytical and diagnostic performances of the method using two real-time PCR instruments were compared. The assay was specific and detected the major genotypes of CSFV. The limit of detection in cell culture medium and serum was 0.1 TCID50/reaction, while in tissue homogenate for both platforms, it was 1 TCID50/reaction. The limit of detection was 1, 10 and 10² gene copies/μL when nuclease-free water, serum and tissue homogenate, respectively, were used as sample matrices for both instruments. The analysis of 108 tissue homogenate and serum samples from animals infected with CSFV naturally and experimentally and non-infected animals showed that the assay provided a highly sensitive and specific method for classical swine fever.
Journal of Virological Methods | 2012
Lester J. Pérez; Carmen L. Perera; María Teresa Frías; José I. Núñez; Llilianne Ganges; Heidy Díaz de Arce
Multiple viral infections are common in pigs under intensive production conditions. All five of the viruses included in this study are associated with multifactorial diseases that cause significant economic losses in swine farming worldwide. The development is described of a novel multiple real-time PCR system based on the use of SYBR Green I that allows the simultaneous detection and differentiation of porcine circovirus 2 (PCV-2), porcine parvovirus (PPV), pseudorabies virus (PRV) and Torque teno sus virus species 1 and 2 (TTSuV1 and TTSuV2) in pigs. The method was able to distinguish between all five viral agents, and tests of other DNA viruses proved the specificity of the system. The multiple real-time PCR system was sensitive, as the limits of detection ranged from 3.65×10(3) to 5.04×10(3) copies of DNA template per reaction. The coefficients of variation were low for both intra-assay and inter-assay variability. In addition, the results of the multiple real-time PCR system tests were 100% consistent with previous results based on specific PCR assay testing of field samples. This method could be a useful tool for epidemiological studies and disease management.
Veterinary Microbiology | 2009
Heidy Díaz de Arce; Lester J. Pérez; María Teresa Frías; Rosa Rosell; Joan Tarradas; José I. Núñez; Llilianne Ganges
Classical swine fever is a highly contagious viral disease causing severe economic losses in pig production almost worldwide. All pestivirus species can infect pigs, therefore accurate and rapid pestivirus detection and differentiation is of great importance to assure control measures in swine farming. Here we describe the development and evaluation of a novel multiplex, highly sensitive and specific RT-PCR for the simultaneous detection and rapid differentiation between CSFV and other pestivirus infections in swine. The universal and differential detection was based on primers designed to amplify a fragment of the 5 non-coding genome region for the detection of pestiviruses and a fragment of the NS5B gene for the detection of classical swine fever virus. The assay proved to be specific when different pestivirus strains from swine and ruminants were evaluated. The analytical sensitivity was estimated to be as little as 0.89TCID(50). The assay analysis of 30 tissue homogenate samples from naturally infected and non-CSF infected animals and 40 standard serum samples evaluated as part of two European Inter-laboratory Comparison Tests conducted by the European Community Reference Laboratory, Hanover, Germany proved that the multiplex RT-PCR method provides a rapid, highly sensitive, and cost-effective laboratory diagnosis for classical swine fever and other pestivirus infections in swine.
Virus Research | 2014
Joan Tarradas; Maria Eugenia de la Torre; Rosa Rosell; Lester J. Pérez; Joan Pujols; Marta Muñoz; Iván Muñoz; Sara Muñoz; Xavier Abad; Mariano Domingo; Lorenzo Fraile; Llilianne Ganges
The severity of the acute form of CSF is responsible for the high mortality rate and has been the subject of many studies. Nevertheless, some animals are likely to develop a mild, chronic, or unapparent form of the disease. Paradoxically, this clinical form of the disease has not been well studied, especially regarding its pathogenesis. In this study, we investigated the infection in domestic pigs that is caused by the CSFV Cat01 strain, which is responsible for the 2001-2002 CSFV outbreak in Catalonia, Spain, and which caused mild and nonspecific clinical signs compared to the infection that is caused by another CSFV strain that is responsible for inducing severe clinical symptoms of disease. We assessed the impact of the CSFV infection in the immune system of domestic pigs, mainly on the kinetics of different cytokines, such as IFN-α (innate immunity) and IFN-γ (adaptive immune response), during the first weeks after infection. In addition, we evaluated the impact on the induction of the humoral response and its relation to the course of infection and the RNA CSFV viral load. The IFN-α levels in the serum samples from the pigs that developed a milder form of the CSF disease (infected with Cat01 strain) were lower than those that were detected in the pig with severe clinical CSF signs (Margarita strain). After infection with Cat01 strain, the IFN-γ levels in response to CSFV were detected in addition to the humoral response. Interestingly, in the serum samples of these animals, we detected the lowest load of CSFV RNA. Similarly, the lowest viral load levels were detected in the tonsils of these pigs. Both the T cells and the humoral response that were generated in most of the pigs that were infected with strain Cat01 may be related to the protection in the symptom progression of CSF against this viral strain. These results explain the antiviral role of IFN-γ in the absence of an antibody response. Likewise, these results corroborate the relevance and relationship that exists between the intensity of the T cell response and the protection against CSFV replication. Additionally, these results also explain how the failure to induce optimal levels of humoral and cellular responses after CSFV infection promotes the spread and persistence of the virus.
Veterinary Microbiology | 2011
Lester J. Pérez; Heidy Díaz de Arce; Martí Cortey; Patricia Domínguez; María Irian Percedo; Carmen L. Perera; Joan Tarradas; María Teresa Frías; Joaquim Segalés; Llilianne Ganges; José I. Núñez
Porcine circovirus type 2 (PCV2) is the essential etiological infectious agent of postweaning multisystemic wasting syndrome (PMWS), which is considered one of the most economically important swine diseases worldwide. In this study, a comparison between methodologies based on classical phylogenetic trees and networks to infer the origin of PCV2 in Cuba was performed. In addition, the mechanisms supporting the genetic variability of Cuban PCV2 populations were investigated. A retrospective study, using pig sera collected in Cuba from 1993 to 2004, to evaluate the presence of PCV2 genome and PCV2-specific antibodies was also conducted and revealed a lack of evidence of PCV2 infection in Cuban swine from years 1993 to 2004. A total of 24 complete Cuban PCV2 sequences collected between 2005 and 2009 from different regions of the country were analyzed. Three classical methods of phylogenetic analysis, namely Neighbour-Joining, Maximum Parsimony and Bayesian Inference, as well as haplotype network construction, were used. Whereas the classical phylogenetic trees suggested different origins for the Cuban PCV2 strains, the haplotype network revealed a direct connection between all the Cuban sequences in agreement with the obtained epidemiological and viral sequence data. Moreover, the importation of pigs carried out in 2005 from the Quebec-Ontario region, Canada, seems to be the most likely origin of PCV2 in Cuba. Likewise, the genetic variability of Cuban PCV2 sequences was supported by geographic segregation and positive selection pressure with estimated rates of nucleotide substitution on the order of 3.12×10(-3) and 6.57×10(-3) substitutions/site/year, which are closer to those reported for RNA viruses.
PLOS ONE | 2015
Sara Muñoz-González; Nicolas Ruggli; Rosa Rosell; Lester J. Pérez; Maria Teresa Frías-Leuporeau; Lorenzo Fraile; Maria Montoya; Lorena Córdoba; Mariano Domingo; F. Ehrensperger; Artur Summerfield; Llilianne Ganges
It is well established that trans-placental transmission of classical swine fever virus (CSFV) during mid-gestation can lead to persistently infected offspring. The aim of the present study was to evaluate the ability of CSFV to induce viral persistence upon early postnatal infection. Two litters of 10 piglets each were infected intranasally on the day of birth with low and moderate virulence CSFV isolates, respectively. During six weeks after postnatal infection, most of the piglets remained clinically healthy, despite persistent high virus titres in the serum. Importantly, these animals were unable to mount any detectable humoral and cellular immune response. At necropsy, the most prominent gross pathological lesion was a severe thymus atrophy. Four weeks after infection, PBMCs from the persistently infected seronegative piglets were unresponsive to both, specific CSFV and non-specific PHA stimulation in terms of IFN-γ-producing cells. These results suggested the development of a state of immunosuppression in these postnatally persistently infected pigs. However, IL-10 was undetectable in the sera of the persistently infected animals. Interestingly, CSFV-stimulated PBMCs from the persistently infected piglets produced IL-10. Nevertheless, despite the addition of the anti-IL-10 antibody in the PBMC culture from persistently infected piglets, the response of the IFN-γ producing cells was not restored. Therefore, other factors than IL-10 may be involved in the general suppression of the T-cell responses upon CSFV and mitogen activation. Interestingly, bone marrow immature granulocytes were increased and targeted by the virus in persistently infected piglets. Taken together, we provided the first data demonstrating the feasibility of CSFV in generating a postnatal persistent disease, which has not been shown for other members of the Pestivirus genus yet. Since serological methods are routinely used in CSFV surveillance, persistently infected pigs might go unnoticed. In addition to the epidemiological and economic significance of persistent CSFV infection, this model could be useful for understanding the mechanisms of viral persistence.
Research in Veterinary Science | 2011
Lester J. Pérez; Heidy Díaz de Arce; María Teresa Frías; Carmen L. Perera; Llilianne Ganges; José I. Núñez
In this study, 40 pigs with respiratory and wasting disorders from Cuban swine herds were screened by PCR for the presence of TTSuV1, TTSuV2, PCV-2, PPV and CSFV in spleen samples. The variability of the porcine TTSuV sequences obtained was investigated by phylogenetic analysis. This study showed for the first time that TTSuV1 and TTSuV2 were present in Cuban swine herds. The investigation revealed the following infection rates: TTSuV1 40%, TTSuV2 37.5%, PCV-2 70%, PPV 37.5% and CSFV in 52.5%. The presence of two or more of these viruses at different rates in the same spleen samples was revealed. Also, a higher genetic diversity of TTSuV2 sequences was observed regarding TTSuV1 sequences.
Molecular and Cellular Probes | 2013
Ana María Acevedo; Carmen L. Perera; Armando Vega; Liliam Rios; Liani Coronado; Damarys Relova; María Teresa Frías; Llilianne Ganges; José I. Núñez; Lester J. Pérez
Infectious bronchitis is a highly contagious viral disease of poultry caused by infectious bronchitis virus (IBV) and is considered one of the most economically important viral diseases of chickens. Control of IBV has been attempted using live attenuated and inactivated vaccines. Live attenuated vaccines of the Massachusetts (Mass.) serotype are the most commonly used for this purpose. Due to the continuous emergence of new variants of the infectious bronchitis virus, the identification of the type of IBV causing an outbreak in commercial poultry is important in the selection of the appropriate vaccine(s) capable of inducing a protective immune response. The present work was aimed at developing and evaluating a duplex SYBR Green I-based real-time RT-PCR (rRT-PCR) assay for the simultaneous detection and differentiation of Mass. and non-Mass. serotypes of IBV. The duplex rRT-PCR yielded curves of amplification with two specific melting curves (Tm1 = 83 °C ± 0.5 °C and Tm2 = 87 °C ± 0.5 °C) and only one specific melting peak (Tm = 87 °C ± 0.5 °C) when the IBV Mass. serotype and IBV non-Mass. serotype strains were evaluated, respectively. The detection limit of the assay was 8.2 gene copies/μL based on in vitro transcribed RNA and 0.1 EID50/mL. The assay was able to detect all the IBV strains assessed and discriminated well among the IBV Mass. and the IBV non-Mass. serotypes strains. In addition, amplification curves were not obtained with any of the other viruses tested. From the 300 field samples tested, the duplex rRT-PCR yielded a total of 80 samples that were positive for IBV (26.67%), 73 samples identified as the IBV Mass. serotype and seven samples as identified as the IBV non-Mass. serotype. A comparison of the performance of test as assessed with field samples revealed that the duplex rRT-PCR detected a higher number of IBV-positive samples than when conventional RT-PCR or virus isolation tests were used. The duplex rRT-PCR presented here is a useful tool for the rapid identification of outbreaks and for surveillance programmes during IB-suspected cases, particularly in countries with a vaccination control programme.
Biochimica et Biophysica Acta | 2016
Purvi C. Trivedi; Jordan J. Bartlett; Lester J. Pérez; Keith R. Brunt; Jean Francois Legare; Ansar Hassan; Petra C. Kienesberger; Thomas Pulinilkunnil
Impaired cardiac metabolism in the obese and diabetic heart leads to glucolipotoxicity and ensuing cardiomyopathy. Glucolipotoxicity causes cardiomyocyte injury by increasing energy insufficiency, impairing proteasomal-mediated protein degradation and inducing apoptosis. Proteasome-evading proteins are degraded by autophagy in the lysosome, whose metabolism and function are regulated by master regulator transcription factor EB (TFEB). Limited studies have examined the impact of glucolipotoxicity on intra-lysosomal signaling proteins and their regulators. By utilizing a mouse model of diet-induced obesity, type-1 diabetes (Akita) and ex-vivo model of glucolipotoxicity (H9C2 cells and NRCM, neonatal rat cardiomyocyte), we examined whether glucolipotoxicity negatively targets TFEB and lysosomal proteins to dysregulate autophagy and cause cardiac injury. Despite differential effects of obesity and diabetes on LC3B-II, expression of proteins facilitating autophagosomal clearance such as TFEB, LAMP-2A, Hsc70 and Hsp90 were decreased in the obese and diabetic heart. In-vivo data was recapitulated in H9C2 and NRCM cells, which exhibited impaired autophagic flux and reduced TFEB content when exposed to a glucolipotoxic milieu. Notably, overloading myocytes with a saturated fatty acid (palmitate) but not an unsaturated fatty acid (oleate) depleted cellular TFEB and suppressed autophagy, suggesting a fatty acid specific regulation of TFEB and autophagy in the cardiomyocyte. The effect of glucolipotoxicity to reduce TFEB content was also confirmed in heart tissue from patients with Class-I obesity. Therefore, during glucolipotoxicity, suppression of lysosomal autophagy was associated with reduced lysosomal content, decreased cathepsin-B activity and diminished cellular TFEB content likely rendering myocytes susceptible to cardiac injury.