Leszek Pająk
AGH University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Leszek Pająk.
Archives of Environmental Protection | 2012
Barbara Tomaszewska; Leszek Pająk
Abstract When identifying the conditions required for the sustainable and long-term exploitation of geothermal resources it is very important to assess the dynamics of processes linked to the formation, migration and deposition of particles in geothermal systems. Such particles often cause clogging and damage to the boreholes and source reservoirs. Solid particles: products of corrosion processes, secondary precipitation from geothermal water or particles from the rock formations holding the source reservoir, may settle in the surface installations and lead to clogging of the injection wells. The paper proposes a mathematical model for changes in the absorbance index and the water injection pressure required over time. This was determined from the operating conditions for a model system consisting of a doublet of geothermal wells (extraction and injection well) and using the water occurring in Liassic sandstone structures in the Polish Lowland. Calculations were based on real data and conditions found in the Skierniewice GT-2 source reservoir intake. The main product of secondary mineral precipitation is calcium carbonate in the form of aragonite and calcite. It has been demonstrated that clogging of the active zone causes a particularly high surge in injection pressure during the fi rst 24 hours of pumping. In subsequent hours, pressure increases are close to linear and gradually grow to a level of ~2.2 MPa after 120 hours. The absorbance index decreases at a particularly fast rate during the fi rst six hours (Figure 4). Over the period of time analysed, its value decreases from over 42 to approximately 18 m3/h/MPa after 120 hours from initiation of the injection. These estimated results have been confi rmed in practice by real-life investigation of an injection well. The absorbance index recorded during the hydrodynamic tests decreased to approximately 20 m3/h/MPa after 120 hours.
Archives of Environmental Protection | 2014
Barbara Tomaszewska; Leszek Pająk; Michał Bodzek
Abstract M embrane-based water desalination processes and hybrid technologies are often considered as a technologically and economically viable alternative for desalination of geothermal waters. This has been confirmed by the results of pilot studies concerning the UF-RO desalination of geothermal waters extracted from various geological structures in Poland. The assessment of the feasibility of implementing the water desalination process analysed on an industrial scale is largely dependent on the method and possibility of disposing or utilising the concentrate. The analyses conducted in this respect have demonstrated that it is possible to use the solution obtained as a balneological product owing to its elevated metasilicic acid, fluorides and iodides ions content. Due to environmental considerations, injecting the concentrate back into the formation is the preferable solution. The energy efficiency and economic analysis conducted demonstrated that the cost effectiveness of implementing the UF-RO process in a geothermal system on an industrial scale largely depends on the factors related to its operation, including without limitation the amount of geothermal water extracted, water salinity, the absorption parameters of the wells used to inject water back into the formation, the scale of problems related to the disposal of cooled water, local demand for drinking and household water, etc. The decrease in the pressure required to inject water into the formation as well as the reduction in the stream of the water injected are among the key cost-effectiveness factors. Ensuring favourable desalinated water sale terms (price/quantity) is also a very important consideration owing to the electrical power required to conduct the UF-RO process.
Geologos | 2015
Maciej Miecznik; Anna Sowiżdżał; Barbara Tomaszewska; Leszek Pająk
Abstract The Chociwel region is part of the Szczecin Trough and constitutes the northeastern segment of the extended Szczecin-Gorzów Synclinorium. Lower Jurassic reservoirs of high permeability of up to 1145 mD can discharge geothermal waters with a rate exceeding 250 m3/h and temperatures reach over 90°C in the lowermost part of the reservoirs. These conditions provide an opportunity to generate electricity from heat accumulated in geothermal waters using binary ORC (Organic Rankine Cycle) systems. A numerical model of the natural state and exploitation conditions was created for the Chociwel area with the use of TOUGH2 geothermal simulator (i.e., integral finite-difference method). An analysis of geological and hydrogeothermal data indicates that the best conditions are found to the southeast of the town of Chociwel, where the bottom part of the reservoir reaches 3 km below ground. This would require drilling two new wells, namely one production and one injection. Simulated production with a flow rate of 275 m3/h, a temperature of 89°C at the wellhead, 30°C injection temperature and wells being 1.2 km separated from each other leads to a small temperature drop and moderate requirements for pumping power over a 50 years’ time span. The ORC binary system can produce at maximum 592.5 kW gross power with the R227ea found as the most suitable working fluid. Geothermal brine leaving the ORC system with a temperature c. 53°C can be used for other purposes, namely mushroom growing, balneology, swimming pools, soil warming, de-icing, fish farming and for heat pumps.
Bulletin of Geography: Physical Geography Series | 2015
Marta Dendys; Barbara Tomaszewska; Leszek Pająk
Abstract Nowadays, numerical modelling is a common tool for supporting the research of geothermal systems. Due to the development of computer sciences and access to software dedicated to numerical modelling of hydrogeological processes this is possible. Research can schematise hydrogeological conditions and simulate the work of geothermal systems and thermal water intakes. Research creates numerical models of geothermal systems at the regional and local scale for simulating work of specific thermal waters for example. In connection with the economic development of the use of thermal waters in Poland there are many research projects where numerical modelling occurs as a primary tool. This paper provides an overview of research issues where the solution to the problem was found by using computer applications and numerical simulators.
Journal of Physics: Conference Series | 2016
Anna Wachowicz-Pyzik; Anna Sowiżdżał; Leszek Pająk
The numerical modeling enables us to reduce the risk related to the selection of best localization of wells. Moreover, at the stage of production, modeling is a suitable tool for optimization of well operational parameters, which guarantees the long life of doublets. The thorough selection of software together with relevant methodology applied to generation of numerical models significantly improve the quality of obtained results. In the following paper, we discuss the impact of density of calculation grid on the results of geothermal doublet simulation with the TOUGH2 code, which applies the finite-difference method. The study area is located between the Szczecin Trough and the Fore-sudetic Monocline, where the Choszczno IG-1 well has been completed. Our research was divided into the two stages. At the first stage, we examined the changes of density of polygon calculation grids used in computations of operational parameters of geothermal doublets. At the second stage, we analyzed the influence of distance between the production and the injection wells on variability in time of operational parameters. The results demonstrated that in both studied cases, the largest differences occurred in pressures measured in production and injection wells whereas the differences in temperatures were less pronounced.
Polish Journal of Environmental Studies | 2013
Barbara Tomaszewska; Leszek Pająk
Gospodarka Surowcami Mineralnymi-mineral Resources Management | 2013
Barbara Tomaszewska; Leszek Pająk
Desalination and Water Treatment | 2017
Barbara Tomaszewska; Leszek Pająk; Grażyna Hołojuch
E3S Web of Conferences | 2018
Anna Wachowicz-Pyzik; Anna Sowiżdżał; Leszek Pająk
Biuletyn Państwowego Instytutu Geologicznego | 2018
Barbara Tomaszewska; Marta Dendys; Leszek Pająk