Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leticia A. Carneiro is active.

Publication


Featured researches published by Leticia A. Carneiro.


Nature Immunology | 2010

Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry

Leonardo H. Travassos; Leticia A. Carneiro; Mahendrasingh Ramjeet; Séamus Hussey; Yun-Gi Kim; Joao G. Magalhaes; Linda Yuan; Fraser Soares; Evelyn Chea; Lionel Le Bourhis; Ivo Gomperts Boneca; Abdelmounaaïm Allaoui; Nicola L. Jones; Gabriel Núñez; Stephen E. Girardin; Dana J. Philpott

Autophagy is emerging as a crucial defense mechanism against bacteria, but the host intracellular sensors responsible for inducing autophagy in response to bacterial infection remain unknown. Here we demonstrated that the intracellular sensors Nod1 and Nod2 are critical for the autophagic response to invasive bacteria. By a mechanism independent of the adaptor RIP2 and transcription factor NF-κB, Nod1 and Nod2 recruited the autophagy protein ATG16L1 to the plasma membrane at the bacterial entry site. In cells homozygous for the Crohns disease–associated NOD2 frameshift mutation, mutant Nod2 failed to recruit ATG16L1 to the plasma membrane and wrapping of invading bacteria by autophagosomes was impaired. Our results link bacterial sensing by Nod proteins to the induction of autophagy and provide a functional link between Nod2 and ATG16L1, which are encoded by two of the most important genes associated with Crohns disease.


EMBO Reports | 2008

NLRX1 is a mitochondrial NOD-like receptor that amplifies NF-κB and JNK pathways by inducing reactive oxygen species production

Ivan Tattoli; Leticia A. Carneiro; Muguette Jéhanno; Joao G. Magalhaes; Youmin Shu; Dana J. Philpott; Damien Arnoult; Stephen E. Girardin

NOD‐like receptors (NLRs) are a family of intracellular sensors of microbial‐ or danger‐associated molecular patterns. Here, we report the identification of NLRX1, which is a new member of the NLR family that localizes to the mitochondria. NLRX1 alone failed to trigger most of the common signalling pathways, including nuclear factor‐κB (NF)‐κB‐ and type I interferon‐dependent cascades, but could potently trigger the generation of reactive oxygen species (ROS). Importantly, NLRX1 synergistically potentiated ROS production induced by tumour necrosis factor α, Shigella infection and double‐stranded RNA, resulting in amplified NF‐κB‐dependent and JUN amino‐terminal kinases‐dependent signalling. Together, these results identify NLRX1 as a NLR that contributes to the link between ROS generation at the mitochondria and innate immune responses.


Cellular Microbiology | 2010

Bacterial membrane vesicles deliver peptidoglycan to NOD1 in epithelial cells

Maria Kaparakis; Lynne Turnbull; Leticia A. Carneiro; Stephen Firth; Harold A. Coleman; Helena C. Parkington; Lionel Le Bourhis; Abdulgader Karrar; Jérôme Viala; Johnson Mak; Melanie L. Hutton; John K. Davies; Peter J. Crack; Paul J. Hertzog; Dana J. Philpott; Stephen E. Girardin; Cynthia B. Whitchurch; Richard L. Ferrero

Gram‐negative bacterial peptidoglycan is specifically recognized by the host intracellular sensor NOD1, resulting in the generation of innate immune responses. Although epithelial cells are normally refractory to external stimulation with peptidoglycan, these cells have been shown to respond in a NOD1‐dependent manner to Gram‐negative pathogens that can either invade or secrete factors into host cells. In the present work, we report that Gram‐negative bacteria can deliver peptidoglycan to cytosolic NOD1 in host cells via a novel mechanism involving outer membrane vesicles (OMVs). We purified OMVs from the Gram‐negative mucosal pathogens: Helicobacter pylori, Pseudomonas aeruginosa and Neisseria gonorrhoea and demonstrated that these peptidoglycan containing OMVs upregulated NF‐κB and NOD1‐dependent responses in vitro. These OMVs entered epithelial cells through lipid rafts thereby inducing NOD1‐dependent responses in vitro. Moreover, OMVs delivered intragastrically to mice‐induced innate and adaptive immune responses via a NOD1‐dependent but TLR‐independent mechanism. Collectively, our findings identify OMVs as a generalized mechanism whereby Gram‐negative bacteria deliver peptidoglycan to cytosolic NOD1. We propose that OMVs released by bacteria in vivo may promote inflammation and pathology in infected hosts.


Journal of Biological Chemistry | 2005

Nod1 Participates in the Innate Immune Response to Pseudomonas aeruginosa

Leonardo H. Travassos; Leticia A. Carneiro; Stephen E. Girardin; Ivo G. Boneca; Ramon Lemos; Marcelo T. Bozza; Regina C. P. Domingues; Anthony J. Coyle; John Bertin; Dana J. Philpott; Maria Cristina Plotkowski

The mammalian innate immune system recognizes pathogen-associated molecular patterns through pathogen recognition receptors. Nod1 has been described recently as a cytosolic receptor that detects specifically diaminopimelate-containing muropeptides from Gram-negative bacteria peptidoglycan. In the present study we investigated the potential role of Nod1 in the innate immune response against the opportunistic pathogen Pseudomonas aeruginosa. We demonstrate that Nod1 detects the P. aeruginosa peptidoglycan leading to NF-κB activation and that this activity is diminished in epithelial cells expressing a dominant-negative Nod1 construct or in mouse embryonic fibroblasts from Nod1 knock-out mice infected with P. aeruginosa. Finally, we demonstrate that the cytokine secretion kinetics and bacterial killing are altered in Nod1-deficient cells infected with P. aeruginosa in the early stages of infection.


The Journal of Pathology | 2008

Nod-like proteins in inflammation and disease.

Leticia A. Carneiro; Joao G. Magalhaes; Ivan Tattoli; Dana J. Philpott; Leonardo H. Travassos

The field of innate immunity has undergone an enormous upheaval during the last decade. The discovery of different groups of proteins, called pattern recognition molecules (PRMs), which detect microbial components, so‐called pathogen‐associated molecular patterns (PAMPs) and trigger protective responses, had a huge impact on the understanding of innate immune responses. Among the PRMs, the intracellular Nod‐like receptors (NLRs) have recently been identified as key mediators of inflammatory and immune responses. The NLR family is divided into subfamilies on the basis of their different signal transduction domains, and recent studies have highlighted the role of certain NLRs, including Nod1, Nod2, Nalp3, Ipaf and Naip5, in the detection of intracellular microbes and possibly ‘danger signals’. In this review, we summarize the current knowledge on the function of these proteins in immunity and inflammation, with a focus on their participation in different disease pathologies. Copyright


Cell Host & Microbe | 2009

Shigella Induces Mitochondrial Dysfunction and Cell Death in Nonmyleoid Cells

Leticia A. Carneiro; Leonardo H. Travassos; Fraser Soares; Ivan Tattoli; Joao G. Magalhaes; Marcelo T. Bozza; Maria Cristina Plotkowski; Philippe J. Sansonetti; Jeffery D. Molkentin; Dana J. Philpott; Stephen E. Girardin

Shigella rapidly kills myeloid cells via a caspase-1 inflammasome-dependent cell death mechanism. However, despite a critical role for nonmyeloid cells in the physiopathology of Shigella infection, the mechanism by which Shigella kills nonmyeloid cells remains uncharacterized. Here we demonstrate that, in nonmyeloid cells, Shigella infection induces loss of mitochondrial inner membrane potential, mitochondrial damage, and necrotic cell death through a pathway dependent on Bnip3 and cyclophilin D, two molecules implicated in the host oxidative stress responses. This mitochondrial cell death mechanism was potently counterbalanced by a Nod1-dependent Rip2/IKKbeta/NF-kappaB signaling pathway activated by the pathogen in the first hours of infection. Our results suggest that in nonmyeloid cells, oxidative stress pathways and signaling triggered by an intracellular bacterial pathogen are tightly linked and demonstrate the existence of specific Shigella-induced prodeath and prosurvival pathways converging at the mitochondria to control a necrotic cell death program.


Seminars in Immunopathology | 2007

The Nodosome: Nod1 and Nod2 control bacterial infections and inflammation

Ivan Tattoli; Leonardo H. Travassos; Leticia A. Carneiro; Joao G. Magalhaes; Stephen E. Girardin

Toll-like receptors (TLRs) and the nucleotide-binding domain, leucine rich repeat containing family (or Nod-like receptors, NLRs) are two important families of microbial sensors that are membrane-associated and cytosolic molecules, respectively. The Nod proteins Nod1 and Nod2 are two NLR family members that trigger immune defense in response to bacterial peptidoglycan. Nod proteins fight off bacterial infections by stimulating proinflammatory signaling and cytokine networks and by inducing antimicrobial effectors, such as nitric oxide and antimicrobial peptides. Nod1 is also critically implicated in shaping adaptive immune responses towards bacterial-derived constituents. In addition, recent evidence has demonstrated that mutations in Nod1 and Nod2 are associated with a number of human inflammatory disorders, including Crohn’s disease, Blau syndrome, early-onset sarcoidosis, and atopic diseases. Together, Nod1 and Nod2 represent central players in the control of immune responses to bacterial infections and inflammation.


Seminars in Immunology | 2009

The role of mitochondria in cellular defense against microbial infection

Damien Arnoult; Leticia A. Carneiro; Ivan Tattoli; Stephen E. Girardin

Mitochondria have been long recognized for their key role in the modulation of cell death pathways. Thus, it is therefore not surprising that this organelle represents a recurrent target for pathogenic microbes, aiming to manipulate the fate of the infected host cell. More recently, mitochondria have been shown to serve as a crucial platform for innate immune signaling, as illustrated by the identification of MAVS (also known as IPS-1, VISA and Cardif), NLRX1 and STING as mitochondrial proteins. This review discusses the tight interplay between microbial infection, innate immune signaling and mitochondria.


European Journal of Immunology | 2007

Nod1 and Nod2 induce CCL5/RANTES through the NF‐κB pathway

Catherine Werts; Lionel Le Bourhis; Jianguo Liu; Joao G. Magalhaes; Leticia A. Carneiro; Jörg H. Fritz; Silvia Stockinger; Viviane Balloy; Thomas Decker; Dana J. Philpott; Xiaojing Ma; Stephen E. Girardin

The Nod‐like receptor proteins Nod1 and Nod2 participate in innate immune responses against bacteria through intracellular detection of peptidoglycan, a component of bacterial cell wall. Recent evidence has demonstrated that Nod1 stimulates the release of chemokines that attract neutrophils at the site of infection, such as CXCL8/IL‐8 in humans, and CXCL1/keratinocyte‐derived chemokine and CXCL2/MIP‐2 in mice. We aimed to determine whether Nod proteins could trigger the release of CCL5/RANTES, a chemokine known to attract a number of immune cells, but not neutrophils. Our results demonstrate that activation of both Nod1 and Nod2 results in substantial secretion of CCL5 by murine macrophages. Moreover, in vivo, the intraperitoneal injection of murine Nod1 or Nod2 agonists resulted in a rapid secretion of CCL5 into the bloodstream. We also observed that Nod‐dependent secretion of CCL5 did not correlate with the induction of the interferon‐β pathway, a major signaling cascade for the activation of CCL5 by viruses. In contrast, we identified a key role of the NF‐κB pathway in Nod‐dependent stimulation of the CCL5 promoter. Together, these results identify a novel target downstream of Nod1 and Nod2, which is likely to play a key role in orchestrating the global Nod‐dependent immune defense during bacterial infections.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Nucleotide oligomerization domain-containing proteins instruct T cell helper type 2 immunity through stromal activation

Joao G. Magalhaes; Stephen Rubino; Leonardo H. Travassos; Lionel Le Bourhis; Wei Duan; Gernot Sellge; Kaoru Geddes; Colin Reardon; Matthias Lechmann; Leticia A. Carneiro; Thirumahal Selvanantham; Jörg H. Fritz; Betsy C. Taylor; David Artis; Tak W. Mak; Michael R. Comeau; Michael Croft; Stephen E. Girardin; Dana J. Philpott

Although a number of studies have examined the development of T-helper cell type 2 (Th2) immunity in different settings, the mechanisms underlying the initiation of this arm of adaptive immunity are not well understood. We exploited the fact that immunization with antigen plus either nucleotide-binding oligomerization domain-containing proteins 1 (Nod1) or 2 (Nod2) agonists drives Th2 induction to understand how these pattern-recognition receptors mediate the development of systemic Th2 immune responses. Here, we show in bone-marrow chimeric mice that Nod1 and Nod2 expression within the stromal compartment is necessary for priming of effector CD4+ Th2 responses and specific IgG1 antibodies. In contrast, sensing of these ligands by dendritic cells was not sufficient to induce Th2 immunity, although these cells contribute to the response. Moreover, we determined that CD11c+ cells were the critical antigen-presenting cells, whereas basophils and B cells did not affect the capacity of Nod ligands to induce CD4+ Th2 effector function. Finally, we found that full Th2 induction upon Nod1 and Nod2 activation was dependent on both thymic stromal lymphopoietin production by the stromal cells and the up-regulation of the costimulatory molecule, OX40 ligand, on dendritic cells. This study provides in vivo evidence of how systemic Th2 immunity is induced in the context of Nod stimulation. Such understanding will influence the rational design of therapeutics that could reprogram the immune system during an active Th1–mediated disease, such as Crohns disease.

Collaboration


Dive into the Leticia A. Carneiro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge