Leticia Cedillo-Barrón
CINVESTAV
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Leticia Cedillo-Barrón.
International Journal of Experimental Pathology | 2005
Mayra Perez-Tapia; Iris Estrada-Garcia; Gilberto Vaughan; Alejandro Escobar-Gutiérrez; Juana Calderon-Amador; Sara Elisa Herrera-Rodríguez; Adriana Brizuela-Garcia; Monica Heras-Chavarria; Adriana Flores-Langarica; Leticia Cedillo-Barrón; Leopoldo Flores-Romo
Although dengue virus (DV) enters through skin while mosquitoes feed, early contacts remain unexplored regarding the cutaneous viral fate and in situ immune responses. We addressed this by exposing healthy, non‐cadaveric, freshly obtained human skin explants to a human DV2 isolate. We demonstrated negative‐strand DV‐RNA and non‐structural protein‐1, both suggestive of viral replication in skin. Although control, mock‐infected and DV‐infected explants showed less (MHC‐CII+/CD1a+/Langerin+) Langerhans cells, deranged morphology and decreased frequency were more apparent in DV‐infected explants. Whereas DV+ cells were infrequent in epidermis and completely absent in dermis, some areas of basal epidermis were clearly DV+, presumably keratinocytes, cells where TUNEL positivity revealed apoptosis. Unlike fresh, control and mock‐infected skin, DV‐infected explants expressed CD80 and CD83, indicative of dendritic cell (DC) activation and maturation, respectively. However, sequential sections indicated that these cells were not DV+, suggesting that activated/mature DCs capable of priming T cells, probably, were not infected. Alternatively, the occasionally infected epidermal DC might not have reached maturation. Interestingly, skin DV infection apparently uncouples the DC activation/maturation process from another crucial DC function, the subsequent migration into dermis. This was suggested, because upon cutaneous DV infection, the few emerging CD83+ (mature) DCs remained within the outer epidermis, while no dermal CD83+ DCs were observed. These paradoxical effects might represent unknown DV subversion strategies. This approach is relatively easy, quick (results in 48 h), economical for developing countries where dengue is re‐emerging and advantageous to evaluate in situ viral biology, immunity and immunopathology and potential antiviral strategies.
Human Molecular Genetics | 2010
Victor Acuña-Alonzo; Teresa Flores-Dorantes; Janine K. Kruit; Teresa Villarreal-Molina; Olimpia Arellano-Campos; Tábita Hünemeier; Andres Moreno-Estrada; Ma Guadalupe Ortiz-López; Hugo Villamil-Ramírez; Paola León-Mimila; Marisela Villalobos-Comparán; Leonor Jacobo-Albavera; Salvador Ramírez-Jiménez; Martin Sikora; Lin-Hua Zhang; Terry D. Pape; Ma de Ángeles Granados-Silvestre; Isela Montúfar-Robles; Ana M. Tito-Alvarez; Camilo Zurita-Salinas; José Bustos-Arriaga; Leticia Cedillo-Barrón; Celta Gomez-Trejo; Rodrigo Barquera-Lozano; João Paulo Botelho Vieira-Filho; Julio Granados; Sandra Romero-Hidalgo; Adriana Huertas-Vazquez; Antonio González-Martín; Amaya Gorostiza
It has been suggested that the higher susceptibility of Hispanics to metabolic disease is related to their Native American heritage. A frequent cholesterol transporter ABCA1 (ATP-binding cassette transporter A1) gene variant (R230C, rs9282541) apparently exclusive to Native American individuals was associated with low high-density lipoprotein cholesterol (HDL-C) levels, obesity and type 2 diabetes in Mexican Mestizos. We performed a more extensive analysis of this variant in 4405 Native Americans and 863 individuals from other ethnic groups to investigate genetic evidence of positive selection, to assess its functional effect in vitro and to explore associations with HDL-C levels and other metabolic traits. The C230 allele was found in 29 of 36 Native American groups, but not in European, Asian or African individuals. C230 was observed on a single haplotype, and C230-bearing chromosomes showed longer relative haplotype extension compared with other haplotypes in the Americas. Additionally, single-nucleotide polymorphism data from the Human Genome Diversity Panel Native American populations were enriched in significant integrated haplotype score values in the region upstream of the ABCA1 gene. Cells expressing the C230 allele showed a 27% cholesterol efflux reduction (P< 0.001), confirming this variant has a functional effect in vitro. Moreover, the C230 allele was associated with lower HDL-C levels (P = 1.77 x 10(-11)) and with higher body mass index (P = 0.0001) in the combined analysis of Native American populations. This is the first report of a common functional variant exclusive to Native American and descent populations, which is a major determinant of HDL-C levels and may have contributed to the adaptive evolution of Native American populations.
Virology Journal | 2016
Moisés León-Juárez; Macario Martínez-Castillo; Gaurav Shrivastava; Julio García-Cordero; Nicolás Villegas-Sepúlveda; Mónica Mondragón-Castelán; Ricardo Mondragón-Flores; Leticia Cedillo-Barrón
BackgroundOne of the main phenomena occurring in cellular membranes during virus infection is a change in membrane permeability. It has been observed that numerous viral proteins can oligomerize and form structures known as viroporins that alter the permeability of membranes. Previous findings have identified such proteins in cells infected with Japanese encephalitis virus (JEV), a member of the same family that Dengue virus (DENV) belongs to (Flaviviridae). In the present work, we investigated whether the small hydrophobic DENV protein NS2B serves a viroporin function.MethodsWe cloned the DENV NS2B sequence and expressed it in a bacterial expression system. Subsequently, we evaluated the effect of DENV NS2B on membranes when NS2B was overexpressed, measured bacterial growth restriction, and evaluated changes of permeability to hygromycin. The NS2B protein was purified by affinity chromatography, and crosslinking assays were performed to determine the presence of oligomers. Hemolysis assays and transmission electron microscopy were performed to identify structures involved in permeability changes.ResultsThe DENV-2 NS2B protein showed similitude with the JEV viroporin. The DENV-2 NS2B protein possessed the ability to change the membrane permeability in bacteria, to restrict bacterial cell growth, and to enable membrane permeability to hygromycin B. The NS2B protein formed trimers that could participate in cell lysis and generate organized structures on eukaryotes membranes.ConclusionsOur data suggest that the DENV-2 NS2B viral protein is capable of oligomerizing and organizing to form pore-like structures in different lipid environments, thereby modifying the permeability of cell membranes.
PLOS Neglected Tropical Diseases | 2011
José Bustos-Arriaga; Jazmín García-Machorro; Moisés León-Juárez; Julio García-Cordero; Leopoldo Santos-Argumedo; Leopoldo Flores-Romo; A. René Méndez-Cruz; Francisco J. Juárez-Delgado; Leticia Cedillo-Barrón
Background When mosquitoes infected with DENV are feeding, the proboscis must traverse the epidermis several times (“probing”) before reaching a blood vessel in the dermis. During this process, the salivary glands release the virus, which is likely to interact first with cells of the various epidermal and dermal layers, cells which could be physiologically relevant to DENV infection and replication in humans. However, important questions are whether more abundant non-hematopoietic cells such as fibroblasts become infected, and whether they play any role in antiviral innate immunity in the very early stages of infection, or even if they might be used by DENV as primary replication cells. Methodology/Principal Findings Fibroblasts freshly released from healthy skin and infected 12 hours after their isolation show a positive signal for DENV. In addition, when primary skin fibroblast cultures were established and subsequently infected, we showed DENV-2 antigen-positive intracellular signal at 24 hours and 48 hours post-infection. Moreover, the fibroblasts showed productive infection in a conventional plaque assay. The skin fibroblasts infected with DENV-2 underwent potent signaling through both TLR3 and RIG- 1, but not Mda5, triggering up-regulation of IFNβ, TNFα, defensin 5 (HB5) and β defensin 2 (HβD2). In addition, DENV infected fibroblasts showed increased nuclear translocation of interferon (IFN) regulatory factor 3 (IRF3), but not interferon regulatory factor 7 (IRF7), when compared with mock-infected fibroblasts. Conclusions/Significance In this work, we demonstrated the high susceptibility to DENV infection by primary fibroblasts from normal human skin, both in situ and in vitro. Our results suggest that these cells may contribute to the pro-inflammatory and anti-viral microenvironment in the early stages of interaction with DENV-2. Furthermore, the data suggest that fibroblast may also be used as a primary site of DENV replication and provide viral particles that may contribute to subsequent viral dissemination.
Vaccine | 2013
Nancy Coconi-Linares; Enrique Ortega-Dávila; Moisés López-González; Jazmín García-Machorro; Julio García-Cordero; Ralph M. Steinman; Leticia Cedillo-Barrón; Miguel A. Gómez-Lim
Dengue virus (DENV) is the causal agent of severe disease and, in some cases, mortality in humans, but no licensed vaccines against dengue are available. An effective vaccine against dengue requires long-term humoral and cellular immune responses. Several viral proteins have been the subjects of intense research, especially the envelope (E) protein, aimed at developing a vaccine. Domain III of the envelope protein (EDIII) has been identified as a potential candidate because it is involved in binding to host cell receptors and contains epitopes that elicit virus neutralizing antibodies. However, this domain is not sufficiently antigenic when is expressed and administered as antigen to elicit a strong immune response. One alternative to enhance immunogenicity is to target the antigen to dendritic cells to induce T-cells for broad antibody responses. In this work, a single chain antibody fragment (scFv) raised against the DEC-205 receptor fused with the EDIII was successfully expressed in Nicotiana benthamiana. The recombinant protein was expressed and purified from the plant and evaluated in BALB/c mice to test its immunogenicity and ability to induce neutralizing antibodies against DENV. The mice immunized with the recombinant protein produced specific and strong humoral immune responses to DENV. Only two immunizations were required to generate a memory response to DENV without the presence of adjuvants. Also, recognition of the recombinant protein with sera from DENV-infected patients was observed. These findings suggest that this strategy has potential for development of an effective vaccine against DENV.
Vector-borne and Zoonotic Diseases | 2008
L. Lazaro-Olán; Gabriela Mellado-Sánchez; Julio García-Cordero; Alejandro Escobar-Gutiérrez; Leopoldo Santos-Argumedo; Benito Gutiérrez-Castañeda; Leticia Cedillo-Barrón
This study was undertaken to evaluate the feasibility of using recombinant dengue proteins to discriminate between acute dengue infections versus uninfected dengue samples. Dengue virus proteins E, NS1, NS3, and NS4B were cloned as fusion proteins and expressed in Escherichia coli. Recombinant products were tested in 100 serum samples obtained from acute dengue fever cases collected from 3 states of Mexico where dengue is endemic. Sera from 75 healthy individuals living in nonendemic areas for dengue were used as a control group. In sera from the dengue patients group, antibody responses to E protein were demonstrated in 91% of cases and NS1 protein was recognized to various extents (99%) within the first 7 days of infection. The antibody responses to NS3 and NS4B were frequently of low magnitude. Consistent negative antibody responses to all proteins were found in sera from the control group. These data suggest that the glutathione-S-transferase (GST)-dengue fusion proteins may be feasible antigens for a sensitive and specific serological assay.
Microbes and Infection | 2014
Leticia Cedillo-Barrón; Julio García-Cordero; José Bustos-Arriaga; Moisés León-Juárez; Benito Gutiérrez-Castañeda
In this review, we discuss the current knowledge of the role of the antibody response against dengue virus and highlight novel insights into targets recognized by the human antibody response. We also discuss how the balance of pathological and protective antibody responses in the host critically influences clinical aspects of the disease.
Archives of Virology | 2010
Gabriela Mellado-Sánchez; Jazmín García-Machorro; Claudia Sandoval-Montes; Benito Gutiérrez-Castañeda; Arturo Rojo-Domínguez; Julio García-Cordero; Leopoldo Santos-Argumedo; Leticia Cedillo-Barrón
A DENV-2 plasmid named pEII*EIII/NS1*, containing sequences encoding portions of the envelope protein that are potentially involved in the induction of neutralizing antibodies and a portion of the NS1 sequence that is involved in protection, is reported in this work. The synthesized subunit protein was recognized by human sera from infected patients and had the predicted size. The immunogenicity of this construct was evaluated using a mouse model in a prime-boost vaccination approach. The priming was performed using the plasmid pEII*EIII/NS1*, followed by a boost with recombinant full-length GST–E and GST–NS1 fusion proteins. The mice showed specific antibody responses to the E and NS1 proteins, as detected by ELISA, compared to the response of animals vaccinated with the parental plasmid. Interestingly, some animals had neutralizing antibodies. These results show that EII*, EIII and NS1* sequences could be considered for the design of a recombinant subunit vaccine against dengue disease.
Immunological Investigations | 2014
Julio García-Cordero; S. Carrillo-Halfon; Moisés León-Juárez; Héctor Romero-Ramírez; P. Valenzuela-León; Moisés López-González; Leopoldo Santos-Argumedo; Benito Gutiérrez-Castañeda; Jorge A. Gonzalez-y-Merchand; Leticia Cedillo-Barrón
Dengue virus (DENV) RNA replication requires 2 viral proteins, non-structural protein 3 (NS3) and NS5. NS5 consists of 2 functional domains: a methyltransferase (MTase) domain involved in RNA cap formation and located in the amino terminal region and a RNA-dependent RNA polymerase domain essential for virus replication and located in the carboxyl terminal region. To gain additional insight into the structural interactions between viral proteins and cellular factors involved in DENV RNA replication, we generated a panel of rat monoclonal antibodies (mAbs) against the NS5 MTase domain. Six rat mAbs were selected from 41 clones, of which clone 13G7 was further characterized. The specificity of this antibody for NS5 was demonstrated by western blot of DENV-infected cells, which revealed that this antibody recognizes all 4 DENV serotypes. Furthermore, Western blotting analysis suggested that this antibody recognizes a sequential epitope of the NS5 protein. Positive and specific staining with 13G7 was detected predominantly in nuclei of DENV-infected cells, similarly a pattern was observed in both in human and monkey cells. Furthermore, the NS5 staining co-localized with a Lamin A protein (Pierson index: 0.7). In summary, this monoclonal antibody could be used to identify and evaluate different cellular factors that may interact with NS5 during DENV replication.
Human Vaccines & Immunotherapeutics | 2013
Jazmín García-Machorro; Moisés López-González; Olivia Barrios-Rojas; Cynthia Fernández-Pomares; Claudia Sandoval-Montes; Leopoldo Santos-Argumedo; Nicolás Villegas-Sepúlveda; Benito Gutiérrez-Castañeda; Leticia Cedillo-Barrón
Domain III (DIII) of the dengue virus (DENV) envelope (E) protein induces strong neutralizing type-specific antibodies. In addition, a region near the fusion loop in domain II (DII) induces the production of cross-reactive antibodies with neutralizing potential. Thus, this study aimed to generate DENV-2 recombinant fusion proteins (i.e., rEII*EIII and rEII*EIII/NS1*) either alone or fused to 3 copies of P28, the minimum CR2-binding domain of the complement protein C3d. The 4 recombinant proteins were generated in a Drosophila melanogaster Schneider 2 (S2) cell system. The expression and secretion of the recombinant proteins were confirmed in vitro using immunofluorescence (IF) and western blot (WB) analyses. Human dengue immune serum samples recognized recombinant proteins. The immunogenicity of the 4 proteins in BALB/c mice was analyzed using ELISA, and the results revealed that the induced specific antibody response was higher in the groups of mice immunized with the P28 fusion proteins. Interestingly, although the 4 recombinant proteins were able to elicit high levels of neutralizing antibodies in BALB/c mice; no adjuvant effect was observed in terms of neutralizing antibodies in the groups immunized with proteins containing P28. Thus, ELISA and PRNT50 assays may evaluate different epitopes and responses, where ELISA showed a wider response that did not always correlate with neutralization. Furthermore, the elicited antibodies were able to recognize the immobilized E glycoprotein of DENV. All mice vaccinated with the DENV-2 recombinant proteins showed induction of higher levels of IgG1 antibodies than of IgG2a antibodies.