Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leticia Morales-Ledesma is active.

Publication


Featured researches published by Leticia Morales-Ledesma.


Reproductive Biology and Endocrinology | 2010

Unilateral sectioning of the superior ovarian nerve of rats with polycystic ovarian syndrome restores ovulation in the innervated ovary

Leticia Morales-Ledesma; Rosa Linares; Gabriela Rosas; Carolina Morán; Roberto Chavira; Mario Cárdenas; Roberto Domínguez

The present study tested the hypothesis that if polycystic ovary syndrome (PCOS) results from activating the noradrenergic outflow to the ovary, unilaterally sectioning the superior ovarian nerve (SON) will result in ovulation by the denervated ovary, and the restoration of progesterone (P4), testosterone (T) and estradiol (E2) normal serum level. A single 2 mg dose of estradiol valerate (EV) to adult rats results in the development of a syndrome similar to the human PCOS. Ten-day old rats were injected with EV or vehicle solution (Vh) and were submitted to sham surgery, unilateral or bilateral sectioning of the SON at 24-days of age. The animals were sacrificed at 90 to 92 days of age, when they presented vaginal estrus preceded by a pro-estrus smear. In EV-treated animals, unilateral sectioning of the SON restored ovulation by the innervated ovary and unilateral or bilateral sectioning of the SON normalized testosterone and estradiol levels. These results suggest that aside from an increase in ovarian noradrenergic tone in the ovaries, in the pathogenesis of the PCOS participate other neural influences arriving to the ovaries via the SON, regulating spontaneous ovulation. Changes in P4, T and E2 serum levels induced by EV treatment seem to be controlled by neural signals arising from the abdominal wall and other signals arriving to the ovaries through the SON, and presents asymmetry.


Reproductive Biology and Endocrinology | 2012

Effects on steroid hormones secretion resulting from the acute stimulation of sectioning the superior ovarian nerve to pre-pubertal rats

Leticia Morales-Ledesma; Elizabeth Vieyra; Deyra A. Ramírez; Angélica Trujillo; Roberto Chavira; Mario Cárdenas; Roberto Domínguez

In the adult rat, neural signals arriving to the ovary via the superior ovarian nerve (SON) modulate progesterone (P4), testosterone (T) and estradiol (E2) secretion. The aims of the present study were to analyze if the SON in the pre-pubertal rat also modulates ovarian hormone secretion and the release of follicle stimulating hormone (FSH) and luteinizing (LH) hormone. P4, T, E2, FSH and LH serum levels were measured 30 or 60 minutes after sectioning the SON of pre-pubertal female rats. Our results indicate that the effects on hormone levels resulting from unilaterally or bilaterally sectioning the SON depends on the analyzed hormone, and the time lapse between surgery and autopsy, and that the treatment yielded asymmetric results. The results also suggest that in the pre-pubertal rat the neural signals arriving to the ovaries via the SON regulate the enzymes participating in P4, T and E2 synthesis in a non-parallel way, indicating that the mechanisms regulating the synthesis of each hormone are not regulated by the same signals. Also, that the changes in the steroids hormones are not explained exclusively by the modifications in gonadotropins secretion. The observed differences in hormone levels between rats sacrificed 30 and 60 min after surgery reflect the onset of the compensatory systems regulating hormones secretion.


Reproductive Biology and Endocrinology | 2011

Effects of acute unilateral ovariectomy to pre-pubertal rats on steroid hormones secretion and compensatory ovarian responses.

Leticia Morales-Ledesma; Deyra A. Ramírez; Elizabeth Vieyra; Angélica Trujillo; Roberto Chavira; Mario Cárdenas; Roberto Domínguez

In the present study we analyzed the existence of asymmetry in the secretion of steroid hormones in pre-pubertal female rats treated with unilateral ovariectomy (ULO) or unilateral perforation of the abdominal wall (sham-surgery). Treated rats were sacrificed at different times after surgery. Since sham-surgery had an apparent effect on the age of first vaginal estrous (FVE) and serum levels hormone, the results of the sham surgery groups were used to assess the effects of their respective surgery treatment groups. On the day of FVE, compensatory ovulation (CO) and compensatory ovarian hypertrophy (COH) were similar in animals with ULO, regardless of the ovary remaining in situ. In ULO treated animals, progesterone (P4) levels were higher than in animals with sham-surgery one hour after treatment but lower in rats sacrificed at FEV. Left-ULO resulted in lower testosterone (T) concentration 48 and 72 hours after surgery. In rats with Right-ULO lower T concentrations were observed in rats sacrificed one or 72 hours after surgery, and at FVE. ULO (left or right) resulted in lower estradiol (E2) concentrations one or 72 hours after treatment. In rats with Left-ULO, E2 levels were higher 48 hours after surgery and at FVE. Left-ULO resulted in higher levels of follicle stimulating hormone (FSH) five hours after surgery and at FVE. FSH levels were higher in rats with Right-ULO sacrificed on FVE. The present results suggest that in the pre-pubertal rat both ovaries have similar capacities to secrete P4, and that the right ovary has a higher capacity to secrete E2. Taken together, the present results support the idea that the effects of ULO result from the decrease in glandular tissue and changes in the neural information arising from the ovary.


Frontiers in Physiology | 2018

The Neural Signals of the Superior Ovarian Nerve Modulate in an Asymmetric Way the Ovarian Steroidogenic Response to the Vasoactive Intestinal Peptide

Gabriela Rosas; Rosa Linares; Deyra A. Ramírez; Elizabeth Vieyra; Angélica Trujillo; Roberto Domínguez; Leticia Morales-Ledesma

The superior ovarian nerve (SON) provides neuropeptide-Y, norepinephrine and vasoactive intestinal peptide (VIP) to the ovaries. Ovarian steroidogenesis is modulated by the SON. In the cyclic rat, the acute steroidogenic response to ovarian microinjection of VIP is asymmetric and varies during the estrous cycle. In the present study, we analyze whether the differential effects of VIP in each ovary are modulated by the neural signals arriving through the SON. Cyclic female rats were submitted on diestrus-1, diestrus-2, proestrus, or estrus to a unilateral section of the SON, and immediately afterward, the denervated ovary was either microinjected or not with VIP. Animals were sacrificed 1 h after treatment. The injection of VIP into the left denervated ovary performed on diestrus-1 decreased progesterone levels in comparison with the left SON sectioning group; similar effects were observed on proestrus when VIP was injected into either of the denervated ovaries. Compared to the left SON sectioning group, VIP treatment into the left denervated ovary on diestrus-2 or proestrus decreased testosterone levels, whereas on diestrus-1, proestrus or estrus, the same treatment resulted in higher estradiol levels. Compared to the right SON sectioning group, VIP injected into the right denervated ovary yielded higher testosterone levels on diestrus-1 and estrus and lower testosterone levels on proestrus. VIP injection into the right denervated ovary increased estradiol levels on diestrus-2 or estrus while decreasing them on proestrus. Our results indicate that in the adult cyclic rat, the set neural signals arriving to the ovaries through the SON asymmetrically modulate the role of VIP on steroid hormone secretion, depending on the endocrine status of the animal. The results also support the hypothesis that the left and right ovary respond differently to the VIPergic stimulus.


Reproductive Sciences | 2017

Both the Suprachiasmatic Nucleus and the Superior Ovarian Nerve Contribute to the Processes of Ovulation and Steroid Hormone Secretion on Proestrus

Deyra A. Ramírez; Elizabeth Vieyra; Aldo I. González; Carolina Morán; Roberto Domínguez; Leticia Morales-Ledesma

The aims of the present study were to analyze if the superior ovarian nerve (SON) plays a role in the neural signals from suprachiasmatic nucleus (SCN) that lead to ovulation and ovarian steroids secretion on proestrus day. Rats on proestrus day were treated at 11.00 to 11.30 or 17.00 to 17.30 hours with 1 of the 3 experimental procedures (1) unilateral or bilateral SON sectioning, (2) unilateral or bilateral injury to the SCN, or (3) unilateral injury to the SCN followed by unilateral sectioning of the SON ipsilateral to the treated SCN. Treatments were evaluated 24 hours after surgical procedures. Compared to laparotomized animals, right or bilateral SON sectioning treatment at 17.00 hours resulted in lower ovulation rates and number of ova shed by the right ovary. The ovaries of nonovulating animals showed early follicular luteinization signs and trapped ova. Bilateral SCN injury treatment at 11.00 hours resulted in anovulation; whereas right SCN injury treatment, with or without right SON sectioning, resulted in a lower number of ova shed. Injecting luteinizing hormone-releasing hormone to animals with bilateral SCN injury restored ovulation. In rats with unilateral or bilateral SON sectioning, or with injury to the SCN with or without unilateral sectioning of the SON, the effects on hormone levels depended of the hormone studied and the time of day treatment was performed. The present results suggest that on proestrus day, the role of the right or both SON in ovulation and steroid hormone secretion regulation takes place through different neuroendocrine mechanisms from SCN.The aims of the present study were to analyze if the superior ovarian nerve (SON) plays a role in the neural signals from suprachiasmatic nucleus (SCN) that lead to ovulation and ovarian steroids secretion on proestrus day. Rats on proestrus day were treated at 11.00 to 11.30 or 17.00 to 17.30 hours with 1 of the 3 experimental procedures (1) unilateral or bilateral SON sectioning, (2) unilateral or bilateral injury to the SCN, or (3) unilateral injury to the SCN followed by unilateral sectioning of the SON ipsilateral to the treated SCN. Treatments were evaluated 24 hours after surgical procedures. Compared to laparotomized animals, right or bilateral SON sectioning treatment at 17.00 hours resulted in lower ovulation rates and number of ova shed by the right ovary. The ovaries of nonovulating animals showed early follicular luteinization signs and trapped ova. Bilateral SCN injury treatment at 11.00 hours resulted in anovulation; whereas right SCN injury treatment, with or without right SON sectioning, resulted in a lower number of ova shed. Injecting luteinizing hormone-releasing hormone to animals with bilateral SCN injury restored ovulation. In rats with unilateral or bilateral SON sectioning, or with injury to the SCN with or without unilateral sectioning of the SON, the effects on hormone levels depended of the hormone studied and the time of day treatment was performed. The present results suggest that on proestrus day, the role of the right or both SON in ovulation and steroid hormone secretion regulation takes place through different neuroendocrine mechanisms from SCN.


Reproductive Biology and Endocrinology | 2018

Pharmacological sympathetic denervation prevents the development of polycystic ovarian syndrome in rats injected with estradiol valerate

Julieta A. Espinoza; Wendy Alvarado; Berenice Venegas; Roberto Domínguez; Leticia Morales-Ledesma

BackgroundThe injection of estradiol valerate in female rats induces polycystic ovary syndrome, which is characterized by polycystic ovaries, anovulation, and hyperandrogenism. These characteristics have been associated with an increase in the ovarian concentration of norepinephrine, which occurs before establishing the polycystic ovary syndrome. The bilateral section of the superior ovarian nerve restores ovarian functions in animals with polycystic ovary syndrome. The superior ovarian nerve provides norepinephrine and vasoactive intestinal peptide to the ovary. An increase in the activity of both neurotransmitters has been associated with the development of polycystic ovary syndrome. The purpose of the present study was analyzed the participation of the noradrenergic nervous system in the development of polycystic ovary syndrome using guanethidine as a pharmacological tool that destroys peripheral noradrenergic nerve fibers.MethodsFourteen-day old female rats of the CIIZ-V strain were injected with estradiol valerate or vehicle solution. Rats were randomly allotted to one of three guanethidine treatment groups for denervation: 1) guanethidine treatment at age 7 to 27-days, 2) guanethidine treatment at age 14 to 34- days, and 3) guanethidine treatment at age 70 to 90- days. All animals were sacrificed when presenting vaginal oestrus at age 90 to 94-days. The parameters analyzed were the number of ova shed by ovulating animals, the ovulation rate (i.e., the numbers of ovulating animals/the numbers of used animals), the serum concentration of progesterone, testosterone, oestradiol and the immunoreactivity for tyrosine hydroxylase enzyme. All data were analyzed statistically. A p-value of less than 0.05 was considered significant.ResultsOur results show that the elimination of noradrenergic fibers before the establishment of polycystic ovary syndrome prevents two characteristics of the syndrome, blocking of ovulation and hyperandrogenism. We also found that in animals that have already developed polycystic ovary syndrome, sympathetic denervation restores ovulatory capacity, but it was not as efficient in reducing hyperandrogenism.ConclusionThe results of the present study suggest that the noradrenergic fibers play a stimulant role in the establishment of polycystic ovary syndrome.


Journal of Ovarian Research | 2017

Anatomical organization and neural pathways of the ovarian plexus nerve in rats

César F. Pastelín; Nora H. Rosas; Leticia Morales-Ledesma; Rosa Linares; Roberto Domínguez; Carolina Morán

BackgroundIn this work, a detailed anatomical description of the ovarian plexus nerve (OPN) in rats is presented. The distribution of the OPN was analyzed by gross anatomy; the features of the superior mesenteric ganglion (SMG) were determined by histological studies; and the localization of the postganglionic neurons innervating the ovary were identified with retrograde tracer.We studied 19 adult cyclic rats of the CIIZ-V strain.ResultsWe found that the right OPN originates from the celiac ganglion, the lumbar ganglion of the sympathetic trunk (LGST) and the SMG. The left OPN originates from the LGST and the anastomotic branch from the splanchnic nerve. The SMG was attached to the inferior vena cava containing sympathetic neurons that innervate the right ovary through the OPN, and which is anatomically single. When the tracer was injected into the right ovary, only the SMG showed positive neurons, while when the tracer was injected into the left ovary, labeled postganglionic neurons were observed in the LGST.ConclusionsThis is the first time that it is reported that the SMG is attached to the inferior vena cava and it is directly related to the right ovary. The neural pathways and sympathetic ganglia involved in the communication between the ovaries and the preganglionic neurons are different in the left and right side.


Archives of Medical Research | 2004

Unilateral or Bilateral Vagotomy Performed on Prepubertal Rats at Puberty Onset of Female Rat Deregulates Ovarian Function

Leticia Morales-Ledesma; Rocı́o Betanzos-Garcı́a; Roberto Domı́nguez-Casalá


Endocrine | 2015

Asymmetric steroidogenic response by the ovaries to the vasoactive intestinal peptide

Gabriela Rosas; María Isabel Ramírez Ramírez; Rosa Linares; Angélica Trujillo; Roberto Domínguez; Leticia Morales-Ledesma


Reproductive Biology and Endocrinology | 2013

Unilateral or bilateral vagotomy induces ovulation in both ovaries of rats with polycystic ovarian syndrome

Rosa Linares; Denisse Hernández; Carolina Morán; Roberto Chavira; Mario Cárdenas; Roberto Domínguez; Leticia Morales-Ledesma

Collaboration


Dive into the Leticia Morales-Ledesma's collaboration.

Top Co-Authors

Avatar

Roberto Domínguez

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Angélica Trujillo

Benemérita Universidad Autónoma de Puebla

View shared research outputs
Top Co-Authors

Avatar

Deyra A. Ramírez

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Elizabeth Vieyra

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Carolina Morán

Benemérita Universidad Autónoma de Puebla

View shared research outputs
Top Co-Authors

Avatar

Rosa Linares

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Gabriela Rosas

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Noé Lagunas

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Pablo Damián-Matsumura

Universidad Autónoma Metropolitana

View shared research outputs
Top Co-Authors

Avatar

Angélica Trujillo Hernández

Benemérita Universidad Autónoma de Puebla

View shared research outputs
Researchain Logo
Decentralizing Knowledge