Letizia Anello
National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Letizia Anello.
Developmental Biology | 2008
Vincenzo Cavalieri; Maria Di Bernardo; Letizia Anello; Giovanni Spinelli
Embryonic development is coordinated by networks of evolutionary conserved regulatory genes encoding transcription factors and components of cell signalling pathways. In the sea urchin embryo, a number of genes encoding transcription factors display territorial restricted expression. Among these, the zygotic Hbox12 homeobox gene is transiently transcribed in a limited number of cells of the animal-lateral half of the early Paracentrotus lividus embryo, whose descendants will constitute part of the ectoderm territory. To obtain insights on the regulation of Hbox12 expression, we have explored the cis-regulatory apparatus of the gene. In this paper, we show that the intergenic region of the tandem Hbox12 repeats drives GFP expression in the presumptive aboral ectoderm and that a 234 bp fragment, defined aboral ectoderm (AE) module, accounts for the restricted expression of the transgene. Within this module, a consensus sequence for a Sox factor and the binding of the Otx activator are both required for correct Hbox12 gene expression. Spatial restriction to the aboral ectoderm is achieved by a combination of different repressive sequence elements. Negative sequence elements necessary for repression in the endomesoderm map within the most upstream 60 bp region and nearby the Sox binding site. Strikingly, a Myb-like consensus is necessary for repression in the oral ectoderm, while down-regulation at the gastrula stage depends on a GA-rich region. These results suggest a role for Hbox12 in aboral ectoderm specification and represent our first attempt in the identification of the gene regulatory circuits involved in this process.
Biological Chemistry | 1999
Franco Palla; Raffaella Melfi; L. Di Gaetano; C Bonura; Letizia Anello; C. Alessandro; Giovanni Spinelli
Abstract Transcription of the sea urchin early histone genes occurs transiently during early cleavage, reaching the maximum at the morula stage and declining to an undetectable level at the gastrula stage. To identify the regulatory elements responsible for the timing and the levels of transcription of the H2A gene, we used promoter binding studies in nuclear extracts and microinjection of a CAT transgene driven by the early H2A promoter. We found that morula and gastrula nuclear proteins produced indistinguishable DNase I footprint patterns on the H2A promoter. Two sites of interactions, centred on the modulator/enhancer and on the CCAAT box respectively, were detected. Deletion of the modulator or coinjection of an excess of modulator sequences severely affected the expression of two transgenes driven by the enhancer-less and modulator-containing H2A promoter. Finally, a DNA fragment containing 3′ coding and post-H2A spacer sequences, where upon silencing three micrococcal nuclease hypersensitive sites were previously mapped, specifically repressed at the gastrula stage the expression of the transgene driven by the H2A promoter. These results indicate that the modulator is essential for the expression of early H2A gene and that sequences for down-regulation are localized near the 3′ end of the H2A gene.
FEMS Microbiology Ecology | 2002
Franco Palla; Cesare Federico; Roberta Russo; Letizia Anello
Abstract We report the presence of Actinomycetes in degraded sandstone monuments, and on examination of 173 samples we identified Nocardia restricta as particularly prevalent. In our procedure, the extracted bacterial DNA was the template in polymerase chain reaction (PCR) experiments in order to amplify specific regions of the 16S rDNA. The fidelity of amplified fragment was confirmed by nested-PCR or restriction enzyme specific cutting. To confirm the specificity of the assay, the amplified fragments were cloned in a convenient plasmid vector, the sequence analysed and compared with the expected DNA genomic portion.
Biochemical and Biophysical Research Communications | 2002
Claudia Alessandro; Paola Di Simone; Alessia Buscaino; Letizia Anello; Franco Palla; Giovanni Spinelli
The modulator of the sea urchin alpha-H2A histone gene promoter is the only enhancer identified in the alpha-histone gene cluster. Binding of a single factor, denoted MBF-1, has previously detected in nuclear extracts from morula and gastrula embryos. Here, we describe the cloning of MBF-1 by screening a cDNA expression library with a tandem array of modulator binding sites. MBF-1 presents no similarity with other DNA binding proteins and contains nine Krüppel like Zn fingers. In vitro translated proteins and a factor from nuclear extracts interact with the modulator with identical specificity. In addition, MBF-1 expressed in human cells transactivates a reporter gene driven by an array of modulator sites. The DNA binding domain consists of the Zn fingers plus an adjacent basic region, while sequences in the N-terminal region mediates the transactivation function. MBF-1 is expressed in the unfertilized egg and in early and late developmental stages thus confirming that it is not a stage specific enhancer binding factor and that silencing of the alpha-H2A gene after hatching is not due to the lack of the transactivator.
Development Growth & Differentiation | 2013
Daniele P. Romancino; Letizia Anello; Giovanni Morici; Alessandra d'Azzo; Antonella Bongiovanni; Maria Di Bernardo
The sea urchin provides a relatively simple and tractable system for analyzing the early stages of embryo development. Here, we use the sea urchin species, Paracentrotus lividus, to investigate the role of Alix in key stages of embryogenesis, namely the egg fertilization and the first cleavage division. Alix is a multifunctional protein involved in different cellular processes including endocytic membrane trafficking, filamentous (F)‐actin remodeling, and cytokinesis. Alix homologues have been identified in different metazoans; in these organisms, Alix is involved in oogenesis and in determination/differentiation events during embryo development. Herein, we describe the identification of the sea urchin homologue of Alix, PlAlix. The deduced amino acid sequence shows that Alix is highly conserved in sea urchins. Accordingly, we detect the PlAlix protein cross‐reacting with monoclonal Alix antibodies in extracts from P. lividus, at different developmental stages. Focusing on the role of PlAlix during early embryogenesis we found that PlAlix is a maternal protein that is expressed at increasingly higher levels from fertilization to the 2‐cell stage embryo. In sea urchin eggs, PlAlix localizes throughout the cytoplasm with a punctuated pattern and, soon after fertilization, accumulates in larger puncta in the cytosol, and in microvilli‐like protrusions. Together our data show that PlAlix is structurally conserved from sea urchin to mammals and may open new lines of inquiry into the role of Alix during the early stages of embryo development.
Development Growth & Differentiation | 2017
Daniele P. Romancino; Letizia Anello; Antonella Lavanco; Valentina Buffa; Maria Di Bernardo; Antonella Bongiovanni
Epithelial‐mesenchymal transition (EMT) is an evolutionarily conserved cellular program, which is a prerequisite for the metastatic cascade in carcinoma progression. Here, we evaluate the EMT process using the sea urchin Paracentrotus lividus embryo. In sea urchin embryos, the earliest EMT event is related to the acquisition of a mesenchymal phenotype by the spiculogenetic primary mesenchyme cells (PMCs) and their migration into the blastocoel. We investigated the effect of inhibiting the epidermal growth factor (EGF) signaling pathway on this process, and we observed that mesenchyme cell differentiation was blocked. In order to extend and validate our studies, we investigated the migratory capability and the level of potential epidermal growth factor receptor (EGFr) targets in a breast cancer cell line after EGF modulation. Altogether, our data highlight the sensitivity of the sea urchin embryo to anti‐EMT drugs and pinpoint the sea urchin embryo as a valuable in vivo model system for studying EMT and the screening of anti‐EMT candidates.
Cell Biology International Reports | 1985
I. Di Liegro; R. Di Marzo; Letizia Anello; Ida Albanese
After purification by buoyant density centrifugation in ethidium bromide - CsCl gradient and electrophoretic fractionation, the DNA fragments isolated from P. lividus egg nuclei incubated with micrococcal nuclease exhibit a typical oligomeric pattern. Analysis of chromatin samples digested to an increasing extent by micrococcal nuclease reveals that the structural organization of egg chromatin is heterogeneous, both in terms of repeat size and degree of sensitivity to nuclease attack. The nucleosomal repeats of P. lividus sperms and embryos up to the mesenchyme blastula stage have also been determined, for comparison.
Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2018
Letizia Anello; Vincenzo Cavalieri; Maria Di Bernardo
The selection and validation of bioactive compounds require multiple approaches, including in-depth analyses of their biological activity in a whole-animal context. We exploited the sea urchin embryo in a rapid, medium-scale range screening to test the effects of the small synthetic kinase inhibitor kenpaullone. We show that sea urchin embryos specifically respond to this molecule depending on both dose and timing of administration. Phenotypic effects of kenpaullone are not immediately visible, since this molecule affects neither the fertilization nor the spatial arrangement of blastomeres at early developmental stages. Nevertheless, kenpaullone exposure from the beginning of embryogenesis profoundly perturbs specification, detachment from the epithelium, and migration of the primary mesenchyme cells, thus affecting the whole embryonic epithelial mesenchymal transition process. Our results reaffirm the sea urchin embryo as an excellent and sensitive in vivo system, which provides straightforward and rapid response to external stimuli.
Invertebrate Reproduction & Development | 1997
Giovanni Spinelli; Maria Di Bernardo; Franco Palla; Letizia Anello; Paola Oliveri; Raffaella Melfi; C Bonura; Roberta Russo; Linda Di Gaetano
Summary Transcriptional regulators are thought to play a key role in cell fate determination and territorial specification in sea urchin. Our goals are to clone transcription factors for studying embryonic development. One approach has been to use promoter binding and gene transfer technology to investigate the mechanisms of transcriptional activation and repression of the early H2A histone gene. By this analysis we identified a transcriptional activator, the MBF-1, that binds to the modulator element of the H2A gene and enhances the activity of the H2A promoter. However, the enhancer activity of the modulator and its interaction with MBF-1 also occurs at the gastrula stage when the early histone genes are shut off. Therefore, the silencing of the early H2A histone gene at late stages of development requires the inactivation of the modulator function. To search for antimodulator sequence elements, we took advantage of our previous work showing the presence of phased nucleosomes specifically positioned on ...
Proceedings of the National Academy of Sciences of the United States of America | 1997
Franco Palla; Raffaella Melfi; Letizia Anello; Maria Di Bernardo; Giovanni Spinelli