Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Letizia Angiolella is active.

Publication


Featured researches published by Letizia Angiolella.


Evidence-based Complementary and Alternative Medicine | 2014

Effects of Mentha suaveolens Essential Oil Alone or in Combination with Other Drugs in Candida albicans

Annarita Stringaro; Elisabetta Vavala; Marisa Colone; Federico Pepi; Giuseppina Mignogna; Stefania Garzoli; Serena Cecchetti; Rino Ragno; Letizia Angiolella

Candidosis is the most important cause of fungal infections in humans. The yeast Candida albicans can form biofilms, and it is known that microbial biofilms play an important role in human diseases and are very difficult to treat. The prolonged treatment with drugs has often resulted in failure and resistance. Due to the emergence of multidrug resistance, alternatives to conventional antimicrobial therapy are needed. This study aims to analyse the effects induced by essential oil of Mentha suaveolens Ehrh (EOMS) on Candida albicans and its potential synergism when used in combination with conventional drugs. Morphological differences between control and EOMS treated yeast cells or biofilms were observed by scanning electron microscopy and transmission electron microscopy (SEM and TEM resp.,). In order to reveal the presence of cell cycle alterations, flow cytometry analysis was carried out as well. The synergic action of EOMS was studied with the checkerboard method, and the cellular damage induced by different treatments was analysed by TEM. The results obtained have demonstrated both the effects of EOMS on C. albicans yeast cells and biofilms and the synergism of EOMS when used in combination with conventional antifungal drugs as fluconazole (FLC) and micafungin (MCFG), and therefore we can hypothesize on its potential use in therapy. Further studies are necessary to know its mechanism of action.


BioMed Research International | 2015

Effects ofMentha suaveolensEssential Oil onChlamydia trachomatis

Rosa Sessa; Marisa Di Pietro; Fiorenzo De Santis; Simone Filardo; Rino Ragno; Letizia Angiolella

Chlamydia trachomatis, the most common cause of sexually transmitted bacterial infection worldwide, has a unique biphasic developmental cycle alternating between the infectious elementary body and the replicative reticulate body. C. trachomatis is responsible for severe reproductive complications including pelvic inflammatory disease, ectopic pregnancy, and obstructive infertility. The aim of our study was to evaluate whether Mentha suaveolens essential oil (EOMS) can be considered as a promising candidate for preventing C. trachomatis infection. Specifically, we investigated the in vitro effects of EOMS towards C. trachomatis analysing the different phases of chlamydial developmental cycle. Our results demonstrated that EOMS was effective towards C. trachomatis, whereby it not only inactivated infectious elementary bodies but also inhibited chlamydial replication. Our study also revealed the effectiveness of EOMS, in combination with erythromycin, towards C. trachomatis with a substantial reduction in the minimum effect dose of antibiotic. In conclusion, EOMS treatment may represent a preventative strategy since it may reduce C. trachomatis transmission in the population and, thereby, reduce the number of new chlamydial infections and risk of developing of severe sequelae.


Antimicrobial Agents and Chemotherapy | 2008

Increase of Virulence and Its Phenotypic Traits in Drug-Resistant Strains of Candida albicans

Letizia Angiolella; Anna Rita Stringaro; Flavia De Bernardis; Brunella Posteraro; Mariantonietta Bonito; Laura Toccacieli; Antonella Torosantucci; Marisa Colone; Maurizio Sanguinetti; Antonio Cassone; Anna Teresa Palamara

ABSTRACT There is concern about the rise of antifungal drug resistance, but little is known about comparative biological properties and pathogenicity of drug-resistant strains. We generated fluconazole (FLC; CO23RFLC)- or micafungin (FK; CO23RFK)-resistant strains of Candida albicans by treating a FLC- and FK-susceptible strain of this fungus (CO23S) with stepwise-increasing concentrations of either drug. Molecular analyses showed that CO23RFLC had acquired markedly increased expression of the drug-resistance efflux pump encoded by the MDR1 gene, whereas CO23RFK had a homozygous mutation in the FSK1 gene. These genetic modifications did not alter to any extent the growth capacity of the drug-resistant strains in vitro, either at 28°C or at 37°C, but markedly increased their experimental pathogenicity in a systemic mouse infection model, as assessed by the overall mortality and target organ invasion. Interestingly, no apparent increase in the vaginopathic potential of the strains was observed with an estrogen-dependent rat vaginal infection. The increased pathogenicity of drug-resistant strains for systemic infection was associated with a number of biochemical and physiological changes, including (i) marked cellular alterations associated with a different expression and content of major cell wall polysaccharides, (ii) more rapid and extensive hypha formation in both liquid and solid media, and (iii) increased adherence to plastic and a propensity for biofilm formation. Overall, our data demonstrate that experimentally induced resistance to antifungal drugs, irrespective of drug family, can substantially divert C. albicans biology, affecting in particular biological properties of potential relevance for deep-seated candidiasis.


Antimicrobial Agents and Chemotherapy | 2002

Identification of Major Glucan-Associated Cell Wall Proteins of Candida albicans and Their Role in Fluconazole Resistance

Letizia Angiolella; Mia M. Micocci; Simona D'Alessio; Antonietta Girolamo; Bruno Maras; Antonio Cassone

ABSTRACT Identification of major glucan-associated proteins (GAPs) of the cell wall of a number of Candida albicans isolates susceptible or resistant to fluconazole (FLC) was addressed by direct sequencing of the protein bands resolved by unidimensional gel electrophoresis. Changes in the GAP compositions of the different strains grown in the presence of the drug were also investigated. In the FLC-susceptible strains, the major (more abundant) GAPs were enolase (46 kDa), two isoforms of phosphoglyceromutase (32 and 29 kDa), and two β-(1-3)-exoglucanases (44 and 34 kDa), one of which (the 34-kDa component) was glycosylated. When these strains were grown in the presence of FLC there were substantial decreases in the intensities of the two enzymes of the glycolytic pathway (enolase and the phosphoglyceromutases), which were apparently replaced by enhancement of the exoglucanase constituents, particularly the 44-kDa one. This GAP pattern closely mimicked that observed in the FLC-resistant strains whether they were grown in the presence or in the absence of the drug. Both the enolase and the exoglucanase constituents were detected in the culture supernatants of FLC-treated cells, together with substantial amounts of highly glycosylated, probably mannoprotein secretory material, suggesting that FLC may cause marked alterations of GAP incorporation into the cell wall. Altogether, we were able to identify all major GAP constituents and monitor their distributions in the cell wall of C. albicans during treatment with FLC. The near equivalence of the GAP profile for the FLC-susceptible strain grown in the presence of FLC to that for the FLC-resistant strain suggests that the effects of the drug on GAPs may be stably incorporated into the cell wall of the fungus upon acquisition of resistance.


Microbiology | 1983

31P Nuclear Magnetic Resonance Study of Growth and Dimorphic Transition in Candida albicans

Antonio Cassone; Giulia Carpinelli; Letizia Angiolella; Giorgio Maddaluno; Franca Podo

A 31P NMR study of the fungal pathogen Candida albicans was carried out. Yeast-form cells at different phases of growth, as well as germ tubes and hyphae were examined. In all cases, the NMR spectra showed well separated resonance peaks arising from phosphorus-containing metabolites, the most prominent being attributable to inorganic phosphate (Pi) polyphosphates, sugar phosphates and mononucleotides, NAD, ADP and ATP. Relevant signals were also detected in the phosphodiester region. The intensity of most signals, as measured relative to that of Pi, was clearly modulated both at the different phases of growth and during yeast-to-mycelium conversion, suggesting significant changes in the intracellular concentration of the corresponding metabolites. In particular, the intensity of the polyphosphate signal was high in exponentially growing, yeast-form cells, then progressively declined in the stationary phase, was very low in germ tubes and, finally, undetectable in hyphae. NMR spectral analysis of the Pi region showed that from early-stationary phase, Pi was present in two different cellular compartments, probably corresponding to the cytoplasm and the vacuole. From the chemical shift of Pi, the pH values of these two compartments could be evaluated. The cytoplasmic pH was generally slightly lower than neutrality (6.7-6.8), whereas the vacuolar pH was always markedly more acidic.


BMC Complementary and Alternative Medicine | 2011

Beneficial effect of Mentha suaveolens essential oil in the treatment of vaginal candidiasis assessed by real-time monitoring of infection

Donatella Pietrella; Letizia Angiolella; Elisabetta Vavala; Anna Rachini; Francesca Mondello; Rino Ragno; Francesco Bistoni; Anna Vecchiarelli

BackgroundVaginal candidiasis is a frequent and common distressing disease affecting up to 75% of the women of fertile age; most of these women have recurrent episodes. Essential oils from aromatic plants have been shown to have antimicrobial and antifungal activities. This study was aimed at assessing the anti-fungal activity of essential oil from Mentha suaveolens (EOMS) in an experimental infection of vaginal candidiasis.MethodsThe in vitro and in vivo activity of EOMS was assessed. The in vitro activity was evaluated under standard CLSI methods, and the in vivo analysis was carried out by exploiting a novel, non-invasive model of vaginal candidiasis in mice based on an in vivo imaging technique.Differences between essential oil treated and saline treated mice were evaluated by the non-parametric Mann-Whitney U-test. Viable count data from a time kill assay and yeast and hyphae survival test were compared using the Students t-test (two-tailed).ResultsOur main findings were: i) EOMS shows potent candidastatic and candidacidal activity in an in vitro experimental system; ii) EOMS gives a degree of protection against vaginal candidiasis in an in vivo experimental system.ConclusionsThis study shows for the first time that the essential oil of a Moroccan plant Mentha suaveolens is candidastatic and candidacidal in vitro, and has a degree of anticandidal activity in a model of vaginal infection, as demonstrated in an in vivo monitoring imaging system. We conclude that our findings lay the ground for further, more extensive investigations to identify the active EOMS component(s), promising in the therapeutically problematic setting of chronic vaginal candidiasis in humans.


Phytomedicine | 2014

In vitro inhibition of herpes simplex virus type 1 replication by Mentha suaveolens essential oil and its main component piperitenone oxide

Livia Civitelli; Simona Panella; Maria Elena Marcocci; Alberto De Petris; Stefania Garzoli; Federico Pepi; Elisabetta Vavala; Rino Ragno; Lucia Nencioni; Anna Teresa Palamara; Letizia Angiolella

Several essential oils exert in vitro activity against bacteria and viruses and, among these latter, herpes simplex virus type 1 (HSV-1) is known to develop resistance to commonly used antiviral agents. Thus, the effects of the essential oil derived from Mentha suaveolens (EOMS) and its active principle piperitenone oxide (PEO) were tested in in vitro experimental model of infection with HSV-1. The 50% inhibitory concentration (IC50) was determined at 5.1μg/ml and 1.4μg/ml for EOMS and PEO, respectively. Australian tea tree oil (TTO) was used as control, revealing an IC50 of 13.2μg/ml. Moreover, a synergistic action against HSV-1 was observed when each oil was added in combination with acyclovir. In order to find out the mechanism of action, EOMS, PEO and TTO were added to the cells at different times during the virus life-cycle. Results obtained by yield reduction assay indicated that the antiviral activity of both compounds was principally due to an effect after viral adsorption. Indeed, no reduction of virus yield was observed when cells were treated during viral adsorption or pre-treated before viral infection. In particular, PEO exerted a strong inhibitory effect by interfering with a late step of HSV-1 life-cycle. HSV-1 infection is known to induce a pro-oxidative state with depletion of the main intracellular antioxidant glutathione and this redox change in the cell is important for viral replication. Interestingly, the treatment with PEO corrected this deficit, thus suggesting that the compound could interfere with some redox-sensitive cellular pathways exploited for viral replication. Overall our data suggest that both EOMS and PEO could be considered good candidates for novel anti-HSV-1 strategies, and need further exploration to better characterize the targets underlying their inhibition.


Journal of Chemotherapy | 2005

Glucan-Associated Protein Modulations and Ultrastructural Changes of the Cell Wall in Candida albicans Treated with Micafungin, a Water-Soluble, Lipopeptide Antimycotic

Letizia Angiolella; Bruno Maras; Annarita Stringaro; G. Arancia; Francesca Mondello; Antonietta Girolamo; Anna Teresa Palamara; Antonio Cassone

Abstract The composition of glucan-associated proteins (GAP) in the cell wall of Candida albicans was strongly affected by treatment with a sub-MIC yet β-glucan synthesis inhibitory concentration (0.01 μg/ml) of FK463 (micafungin). Namely, a decrease in enzymes of glucose metabolism (mostly enolase and a novel 40 kDaltons component, here identified as the enzyme fructose-1,6-biphosphate aldolase) was observed, and this was coupled with an increase in two β1-3 exo-glucanase isoforms (34 and 44 kDa, respectively). No GAP changes were detected in the same strain of the fungus made resistant to the drug, attesting to the specificity of the observed cell wall protein modulation. In addition, GAP changes were accompanied by marked ultrastructural alterations upon treatment with the sub-MIC dose of the drug, the majority of which was an aberrant cell surface morphology and a derangement of the normal layering of the cell wall. Our data demonstrate that sub-MIC doses of micafungin do critically affect not only the β-glucan synthetic machinery but also protein composition and the whole cell wall structure of Candida albicans.


Molecules | 2015

Multidisciplinary Approach to Determine the Optimal Time and Period for Extracting the Essential Oil from Mentha suaveolens Ehrh

Stefania Garzoli; Adele Pirolli; Elisabetta Vavala; Antonella Di Sotto; Gianni Sartorelli; Mijat Božović; Letizia Angiolella; Federico Pepi; Rino Ragno

A comprehensive study on essential oils (EOs) extracted from some Mentha suaveolens L. samples, collected in the countryside of Tarquinia, is reported. In this study, the procedure for essential oil preparation, in terms of harvesting and extraction time, was analyzed in detail for the first time. The GC/MS analysis, carried out on 18 samples, revealed that piperitenone oxide (PO), the main essential oils’ chemical constituent, is primarily responsible for the related antifungal activity. Nevertheless, EOs with lower PO content indicate that other chemicals, such as para-cymenene, may participate in exerting the EOs’ antifungal effect. Furthermore, the bacterial reverse mutation assay highlighted lack of mutagenic effect in all tested samples. Analysis of the results indicated that for higher activity, the essential oils should be produced with 3 h maximum hydrodistillation, regardless of the harvesting time. Differently, the maximum essential oil yield can be obtained in August and the highest piperitenone oxide percentage is obtainable in July.


Journal of Enzyme Inhibition and Medicinal Chemistry | 2016

Antimicrobial activity, synergism and inhibition of germ tube formation by Crocus sativus-derived compounds against Candida spp.

Simone Carradori; Paola Chimenti; Marina Fazzari; Arianna Granese; Letizia Angiolella

Abstract The limited arsenal of synthetic antifungal agents and the emergence of resistant Candida strains have prompted the researchers towards the investigation of naturally occurring compounds or their semisynthetic derivatives in order to propose new innovative hit compounds or new antifungal combinations endowed with reduced toxicity. We explored the anti-Candida effects, for the first time, of two bioactive compounds from Crocus sativus stigmas, namely crocin 1 and safranal, and some semisynthetic derivatives of safranal obtaining promising biological results in terms of minimum inhibitory concentration/minimum fungicidal concentration (MIC/MFC) values, synergism and reduction in the germ tube formation. Safranal and its thiosemicarbazone derivative 5 were shown to display good activity against Candida spp.

Collaboration


Dive into the Letizia Angiolella's collaboration.

Top Co-Authors

Avatar

Elisabetta Vavala

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Rino Ragno

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Annarita Stringaro

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marisa Colone

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruno Maras

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Federico Pepi

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefania Garzoli

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge