Letizia Cito
Temple University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Letizia Cito.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Filomena de Nigris; Valeria Crudele; Alfonso Giovane; Amelia Casamassimi; Antonio Giordano; Hermes Garban; Francesco Cacciatore; Francesca Pentimalli; Diana C. Márquez-Garbán; Antonella Petrillo; Letizia Cito; Linda Sommese; Andrea Fiore; Mario Petrillo; Alfredo Siani; Antonio Barbieri; Claudio Arra; Franco Rengo; Toshio Hayashi; Mohammed Al-Omran; Louis J. Ignarro; Claudio Napoli
Tumor growth requires neoangiogenesis. VEGF is the most potent proangiogenic factor. Dysregulation of hypoxia-inducible factor (HIF) or cytokine stimuli such as those involving the chemokine receptor 4/stromal-derived cell factor 1 (CXCR4/SDF-1) axis are the major cause of ectopic overexpression of VEGF in tumors. Although the CXCR4/SDF-1 pathway is well characterized, the transcription factors executing the effector function of this signaling are poorly understood. The multifunctional Yin Yang 1 (YY1) protein is highly expressed in different types of cancers and may regulate some cancer-related genes. The network involving CXCR4/YY1 and neoangiogenesis could play a major role in cancer progression. In this study we have shown that YY1 forms an active complex with HIF-1α at VEGF gene promoters and increases VEGF transcription and expression observed by RT-PCR, ELISA, and Western blot using two different antibodies against VEGFB. Long-term treatment with T22 peptide (a CXCR4/SDF-1 inhibitor) and YY1 silencing can reduce in vivo systemic neoangiogenesis (P < 0.01 and P < 0.05 vs. control, respectively) during metastasis. Moreover, using an in vitro angiogenesis assay, we observed that YY1 silencing led to a 60% reduction in branches (P < 0.01) and tube length (P < 0.02) and a 75% reduction in tube area (P < 0.001) compared with control cells. A similar reduction was observed using T22 peptide. We demonstrated that T22 peptide determines YY1 cytoplasmic accumulation by reducing its phosphorylation via down-regulation of AKT, identifying a crosstalk mechanism involving CXCR4/YY1. Thus, YY1 may represent a crucial molecular target for antiangiogenic therapy during cancer progression.
BioMed Research International | 2012
M. Di Domenico; F. D'apuzzo; Antonia Feola; Letizia Cito; A. Monsurrò; Giovanna Maria Pierantoni; L. Berrino; A. De Rosa; A. Polimeni; Letizia Perillo
Orthodontics is a branch of dentistry that aims at the resolution of dental malocclusions. The specialist carries out the treatment using intraoral or extraoral orthodontic appliances that require forces of a given load level to obtain a tooth movement in a certain direction in dental arches. Orthodontic tooth movement is dependent on efficient remodeling of periodontal ligament and alveolar bone, correlated with several biological and mechanical responses of the tissues surrounding the teeth. A periodontal ligament placed under pressure will result in bone resorption whereas a periodontal ligament under tension results in bone formation. In the primary stage of the application of orthodontic forces, an acute inflammation occurs in periodontium. Several proinflammatory cytokines are produced by immune-competent cells migrating by means of dilated capillaries. In this paper we summarize, also through the utilization of animal models, the role of some of these molecules, namely, interleukin-1β and vascular endothelial growth factor, that are some proliferation markers of osteoclasts and osteoblasts, and the macrophage colony stimulating factor.
World journal of clinical oncology | 2012
Antonio Giordano; Letizia Cito
Gastric cancer is a multifactorial neoplastic pathology numbering among its causes both environmental and genetic predisposing factors. It is mainly diffused in South America and South-East Asia, where it shows the highest morbility percentages and it is relatively scarcely diffused in Western countries and North America. Although molecular mechanisms leading to gastric cancer development are only partially known, three main causes are well characterized: Helicobacter pylori (H. pylori) infection, diet rich in salted and/or smoked food and red meat, and epithelial cadherin (E-cadherin) mutations. Unhealthy diet and H. pylori infection are able to induce in stomach cancer cells genotypic and phenotypic transformation, but their effects may be crossed by a diet rich in vegetables and fresh fruits. Various authors have recently focused their attention on the importance of a well balanced diet, suggesting a necessary dietary education starting from childhood. A constant surveillance will be necessary in people carrying E-cadherin mutations, since they are highly prone in developing gastric cancer, also within the inner stomach layers. Above all in the United States, several carriers decided to undergo a gastrectomy, preferring changing their lifestyle than living with the awareness of the development of a possible gastric cancer. This kind of choice is strictly personal, hence a decision cannot be suggested within the clinical management. Here we summarize the key points of gastric cancer prevention analyzing possible strategies referred to the different predisposing factors. We will discuss about the effects of diet, H. pylori infection and E-cadherin mutations and how each of them can be handled.
Breast Cancer Research and Treatment | 2007
Monica R. Maiello; Amelia D’Alessio; Antonella De Luca; Adele Carotenuto; Anna Maria Rachiglio; Maria Napolitano; Letizia Cito; Antonella Guzzo; Nicola Normanno
AKT and MAPK signaling are involved in the resistance of breast cancer cells to the EGFR tyrosine kinase inhibitor gefitinib. RAS proteins are upstream mediators that transfer messages from surface receptors to intracellular signal transducers including MAPK and AKT pathways. AZD3409 is a novel prenyl inhibitor that has shown activity against both farnesyl transferase and geranylgeranyl transferase in isolated enzyme studies. We explored the activity of AZD3409 on breast cancer cell lines with high (SK-Br-3), intermediate (MDA-MB-361) or low (MDA-MB-468) sensitivity to gefitinib. We found that AZD3409 inhibits the growth of breast cancer cells in a dose-dependent manner, with the MDA-MB-468 and MDA-MB-361 cell lines showing higher sensitivity as compared with SK-Br-3 cells. Treatment with AZD3409 produced a significant reduction in the levels of activation of AKT in the three cell lines. AZD3409 also induced an increase in the expression of p27kip-1 and of hypophosphorylated forms of pRb2 in MDA-MB-468 cells that was associated with accumulation of cells in G0/G1 and the appearance of a sub-G1 peak suggestive of apoptosis. In contrast, AZD3409 produced a G2 arrest associated with reduced expression of pRb2 in MDA-MB-361 cells. A synergistic anti-tumor effect was observed when MDA-MB-468 or MDA-MB-361 cells were treated with both AZD3409 and gefitinib, whereas this combination was only additive in SK-Br-3 cells. However, treatment of breast cancer cells with AZD3409 and gefitinib did not produce a more significant blockade of AKT signaling as compared with gefitinib alone. These data suggest that AZD3409 might be active in gefitinib-resistant breast carcinoma.
Journal of Cellular Physiology | 2010
Giovanni Di Bernardo; Umberto Galderisi; Carmela Fiorito; Tiziana Squillaro; Letizia Cito; Marilena Cipollaro; Antonio Giordano; Claudio Napoli
Hematopoietic stem cells derive regulatory information also from parathyroid hormone (PTH). To explore the possibility that PTH may have a role in regulation of other stem cells residing in bone marrow, such as mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) we assessed the effect of this hormone on the in vitro behavior of MSCs and EPCs. We evidenced that MSCs were much more responsive to PTH than EPCs. PTH increased the proliferation rate of MSCs with a diminution of senescence and apoptosis. Taken together, our results may suggest a protective effect of PTH on MSCs that reduces stress phenomena and preserve genome integrity. At the opposite, PTH did not modify the fate of EPCs in culture. J. Cell. Physiol. 222: 474–480, 2010.
World Journal of Gastroenterology | 2014
Danila Penon; Letizia Cito; Antonio Giordano
The Tenth International Gastric Cancer Congress (IGCC) was held in Verona, Italy, from June 19 to 22, 2013. The meeting enclosed various aspects of stomach tumor management, including both tightly clinical approaches, and topics more related to basic research. Moreover, an overview on gastrointestinal stromal tumors was provided too, although here not discussed. Here we will discuss some topics related to molecular biology of gastric cancer (GC), inherent to prognostic, diagnostic and therapeutic tools shown at the conference. Results about well known subjects, such as E-cadherin loss of expression/function, were presented. They revealed that other mutations of the gene were identified, showing a continuous research to improve diagnosis and prognosis of stomach tumor. Simultaneously, new possible molecular markers with an established role for other neoplasms, were discussed, such as mesothelin, stomatin-like protein 2 and Notch-1. Hence, a wide overview including both old and new diagnostic/prognostic tools was offered. Great attention was also dedicated to possible drugs to be used against GC. They included monoclonal antibodies, such as MS57-2.1, drugs used in other pathologies, such as maraviroc, and natural extracts from plants such as biflorin. We would like to contribute to summarize the most impressive studies presented at the IGCC, concerning novel findings about molecular biology of gastric cancer. Although further investigations will be necessary, it can be inferred that more and more tools were developed, so as to better face stomach neoplasms.
Clinical Cancer Research | 2008
Valeria Masciullo; Ester Berardengo; Antonella Boglione; Alessandro Sgambato; Amelia Bernardi; Marco Forni; Alessandra Linari; Letizia Cito; Giovanni Scambia; Alessandro Comandone; Antonio Giordano
Purpose: pRb2/p130, a member of the Retinoblastoma gene family, has been shown to be a powerful prognostic factor in several malignancies. We sought to evaluate pRb2/p130 protein expression and its clinical effect in patients affected with soft tissue sarcomas (STS). Experimental Design: Expression of pRb2/p130 was evaluated by immunohistochemistry on formalin-fixed, paraffin-embedded sections in 41 STSs. Results obtained were correlated with clinicopathologic variables and disease-free and overall survival (OS) in univariate and multivariate analysis. Results: Expression of pRb2/p130 was diminished in 25 (61%) tumors, whereas the remaining ones (39%) were classified as high expressors. No correlation between pRb2/p130 expression and clinicopathologic variables was observed. However, a direct relationship between pRb2/p130 expression and clinical outcome of the patients was found in the subgroup of nonmetastatic tumors (n = 31). In univariate analysis, reduced pRb2/p130 expression was a negative prognostic factor and correlated with shorter disease-free survival (P = 0.021) and OS (P = 0.017) survival. In multivariate analysis, reduced pRb2/p130 expression was confirmed to be an independent predictor of shorter OS when considered together with tumor stage and grading (risk ratio, 7.893; confidence interval, 1.618-38.509; P = 0.011). Conclusions: This study shows for the first time the potential prognostic value of pRb2/130 expression evaluated on formalin-fixed, paraffin-embedded sections in STSs patients. pRb2/p130 immunoreactivity can be used to predict OS in patients with nonmetastatic STSs and, therefore, may represent a new prognostic marker.
Journal of Cellular Physiology | 2015
Letizia Cito; Paola Indovina; Iris Maria Forte; Francesca Pentimalli; Domenico Di Marzo; Pasquale Somma; Daniela Barone; Antonella Penon; Danila Penon; Elisa Ceccherini; Pietro Micheli; Luca Saragoni; Marina Di Domenico; Antonia Feola; Franco Roviello; Eliseo Mattioli; Giovan Giacomo Giordano; Antonio Giordano
pRb2/p130 is a key tumor suppressor, whose oncosuppressive activity has mainly been attributed to its ability to negatively regulate cell cycle by interacting with the E2F4 and E2F5 transcription factors. Indeed, pRb2/p130 has been found altered in various cancer types in which it functions as a valuable prognostic marker. Here, we analyzed pRb2/p130 expression in gastric cancer tissue samples of diffuse histotype, in comparison with their normal counterparts. We found a cytoplasmic localization of pRb2/p130 in cancer tissue samples, whereas, in normal counterparts, we observed the expected nuclear localization. pRb2/p130 cytoplasmic delocalization can lead to cell cycle deregulation, but considering the emerging involvement of pRb2/p130 in other key cellular processes, it could contribute to gastric tumorigenesis also through other mechanisms. Our data support the necessity of further investigations to verify the possibility of using pRb2/p130 as a biomarker or potential therapeutic target for diffuse gastric cancer. J. Cell. Physiol. 230: 802–805, 2015.
Journal of Cellular Biochemistry | 2013
Antonia Feola; Annamaria Cimini; Francesca Migliucci; Rosamaria Iorio; Candida Zuchegna; Rodger Rothenberger; Letizia Cito; Antonio Porcellini; Gerhard Unteregger; Vincenzo Tombolini; Antonio Giordano; Marina Di Domenico
Phosphoinositide 3‐kinase proteins are composed by a catalytic p110 subunit and a regulatory p85 subunit. There are three classes of PI3K, named class I–III, on the bases of the protein domain constituting and determining their specificity. The first one is the best characterized and includes a number of key elements for the integration of different cellular signals. Regulatory p85 subunit shares with the catalytic p110 subunit, a N‐terminal SH3 domain showing homology with the protein domain Rho‐GTP‐ase. After cell stimulation, all class I PI3Ks are recruited to the inner face of the plasma membrane, where they generate phosphatidylinositol‐3,4,5‐trisphosphate by direct phosphorylation of phosphatidylinositol‐4,5‐bisphosphate. All pathways trigger the control of different phenomena such as cell growth, proliferation, apoptosis, adhesion and migration through various downstream effectors. We have previously provided direct evidences that a Serine in position 83, adjacent to the N‐terminal SH3 domain of regulatory subunit of PI3K, is a substrate of PKA. The aim of this work is to confirm the role of p85αPI3KSer83 in regulating cell proliferation, migration and invasion in prostate cancer cells LNCaP. To this purpose cells were transfected with mutant forms of p85, where Serine was replaced by Alanine, where phosphorylation is prevented, or Aspartic Acid, to mimic the phosphorylated residue. The findings of this study suggest that identifying a peptide mimicking the sequence adjacent to Ser 83 may be used to produce antibodies against this residue that can be proposed as usefool tool for prognosis by correlating phosphorylation at Ser83 with tumor stage. J. Cell. Biochem. 114: 2114–2119, 2013.
Archive | 2010
Francesca Pentimalli; Letizia Cito; Antonio Giordano
The retinoblastoma gene RB, which was the first tumor suppressor gene to be identified, is a key regulator of the cell cycle and its inactivation, either direct or indirect, underlies multiple types of human tumors. Consistent with its role as tumor suppressor, it is well established that RB inhibits cell proliferation by binding to the E2F family of transcription factors thereby repressing genes that are required for the G1–S transition of the cell cycle. However, in the past decade, a myriad of studies focusing on the role of RB in cancer development implicated RB in many cellular processes that could all contribute to its tumor suppressor function, suggesting that the role of RB in cancer is much more complex than previously thought. To further complicate matters, the other members of the RB family, retinoblastoma-like 1 (RBL1 or p107) and retinoblastoma-like 2 (RBL2 or p130), have both overlapping and distinct functions compared with RB and many cellular functions of RB are mediated by over a hundred interacting proteins and numerous transcriptional targets. Now, emerging evidence shows that RB status can influence the response to different anti-cancer therapeutics according to the context. Therefore, a thorough understanding of all RB functions in cancer is more crucial than ever.