Letizia Monico
University of Perugia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Letizia Monico.
Analytical Chemistry | 2011
Letizia Monico; Geert Van der Snickt; Koen Janssens; Wout De Nolf; Costanza Miliani; Johan Verbeeck; He Tian; Haiyan Tan; Joris Dik; Marie Radepont; Marine Cotte
On several paintings by artists of the end of the 19th century and the beginning of the 20th Century a darkening of the original yellow areas, painted with the chrome yellow pigment (PbCrO(4), PbCrO(4)·xPbSO(4), or PbCrO(4)·xPbO) is observed. The most famous of these are the various Sunflowers paintings Vincent van Gogh made during his career. In the first part of this work, we attempt to elucidate the degradation process of chrome yellow by studying artificially aged model samples. In view of the very thin (1-3 μm) alteration layers that are formed, high lateral resolution spectroscopic methods such as microscopic X-ray absorption near edge (μ-XANES), X-ray fluorescence spectrometry (μ-XRF), and electron energy loss spectrometry (EELS) were employed. Some of these use synchrotron radiation (SR). Additionally, microscopic SR X-ray diffraction (SR μ-XRD), μ-Raman, and mid-FTIR spectroscopy were employed to completely characterize the samples. The formation of Cr(III) compounds at the surface of the chrome yellow paint layers is particularly observed in one aged model sample taken from a historic paint tube (ca. 1914). About two-thirds of the chromium that is present at the surface has reduced from the hexavalent to the trivalent state. The EELS and μ-XANES spectra are consistent with the presence of Cr(2)O(3)·2H(2)O (viridian). Moreover, as demonstrated by μ-XANES, the presence of another Cr(III) compound, such as either Cr(2)(SO(4))(3)·H(2)O or (CH(3)CO(2))(7)Cr(3)(OH)(2) [chromium(III) acetate hydroxide], is likely.
Analytical Chemistry | 2013
Letizia Monico; Koen Janssens; Costanza Miliani; Brunetto Giovanni Brunetti; Manuela Vagnini; Frederik Vanmeert; Gerald Falkenberg; Artem M. Abakumov; Ying-Gang Lu; He Tian; Johan Verbeeck; Marie Radepont; Marine Cotte; Ella Hendriks; Muriel Geldof; Luuk van der Loeff; Johanna Salvant; Michel Menu
The painter, Vincent van Gogh, and some of his contemporaries frequently made use of the pigment chrome yellow that is known to show a tendency toward darkening. This pigment may correspond to various chemical compounds such as PbCrO(4) and PbCr(1-x)S(x)O(4), that may each be present in various crystallographic forms with different tendencies toward degradation. Investigations by X-ray diffraction (XRD), mid-Fourier Transform infrared (FTIR), and Raman instruments (benchtop and portable) and synchrotron radiation-based micro-XRD and X-ray absorption near edge structure spectroscopy performed on oil-paint models, prepared with in-house synthesized PbCrO(4) and PbCr(1-x)S(x)O(4), permitted us to characterize the spectroscopic features of the various forms. On the basis of these results, an extended study has been carried out on historic paint tubes and on embedded paint microsamples taken from yellow-orange/pale yellow areas of 12 Van Gogh paintings, demonstrating that Van Gogh effectively made use of different chrome yellow types. This conclusion was also confirmed by in situ mid-FTIR investigations on Van Goghs Portrait of Gauguin (Van Gogh Museum, Amsterdam).
Reviews in Analytical Chemistry | 2013
Koen Janssens; Matthias Alfeld; Geert Van der Snickt; Wout De Nolf; Frederik Vanmeert; Marie Radepont; Letizia Monico; Joris Dik; Marine Cotte; Gerald Falkenberg; Costanza Miliani; Brunetto Giovanni Brunetti
We review methods and recent studies in which macroscopic to (sub)microscopic X-ray beams were used for nondestructive analysis and characterization of pigments, paint microsamples, and/or entire paintings. We discuss the use of portable laboratory- and synchrotron-based instrumentation and describe several variants of X-ray fluorescence (XRF) analysis used for elemental analysis and imaging and combined with X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). Macroscopic and microscopic (μ-)XRF variants of this method are suitable for visualizing the elemental distribution of key elements in paint multilayers. Technical innovations such as multielement, large-area XRF detectors have enabled such developments. The use of methods limited to elemental analysis or imaging usually is not sufficient to elucidate the chemical transformations that take place during natural pigment alteration processes. However, synchrotron-based combinations of μ-XRF, μ-XAS, and μ-XRD are suitable for such studies.
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2013
Letizia Monico; Francesca Rosi; Costanza Miliani; Alessia Daveri; Brunetto Giovanni Brunetti
In this work a reflection mid-infrared spectroscopy study of twelve metal-oxalate complexes, of interest in art conservation science as alteration compounds, was performed. Spectra of the reference materials highlighted the presence of derivative-like and/or inverted features for the fundamental vibrational modes as result of the main contribution from the surface component of the reflected light. In order to provide insights in the interpretation of theses spectral distortions, reflection spectra were compared with conventional transmission ones. The Kramers-Kronig (KK) algorithm, employed to correct for the surface reflection distortions, worked properly only for the derivative-like bands. Therefore, to pay attention to the use of this algorithm when interpreting the reflection spectra is recommended. The outcome of this investigation was exploited to discriminate among different oxalates on thirteen polychrome artworks analyzed in situ by reflection mid-infrared spectroscopy. The visualization of the νs(CO) modes (1400-1200 cm(-1)) and low wavenumber bands (below 900 cm(-1)) in the raw reflection profiles allowed Ca, Cu and Zn oxalates to be identified. Further information about the speciation of different hydration forms of calcium oxalates were obtained by using the KK transform. The work proves reflection mid-infrared spectroscopy to be a reliable and sensitive spectro-analytical method for identifying and mapping different metal-oxalate alteration compounds on the surface of artworks, thus providing conservation scientists with a non-invasive tool to obtain information on the state of conservation and causes of alteration of artworks.
Angewandte Chemie | 2013
Haiyan Tan; He Tian; Jo Verbeeck; Letizia Monico; Koen Janssens; Gustaaf Van Tendeloo
Getting the picture: The investigation of 100 year old chrome yellow paint by transmission electron microscopy and spectroscopy has led to the identification of four types of core-shell particles. This nanoscale investigation has allowed a mechanism to be proposed for the darkening of some bright yellow colors in Van Goghs paintings (e.g. in Falling leaves (Les Alyscamps), 1888).
Journal of Analytical Atomic Spectrometry | 2015
Letizia Monico; Koen Janssens; Matthias Alfeld; Marine Cotte; Frederik Vanmeert; C.G. Ryan; Gerald Falkenberg; Daryl L. Howard; Brunetto Giovanni Brunetti; Costanza Miliani
A combination of synchrotron radiation (SR) micro X-ray fluorescence (μ-XRF) and XRF mode X-ray absorption near edge structure (XANES) measurements at the Cr K-edge already allowed us to establish that the photo-reduction of chromates to Cr(III) compounds is the cause of darkening of chrome yellow pigments (PbCr1−xSxO4, 0 ≤ x ≤ 0.8) in a number of paintings by Vincent van Gogh and in corresponding artificially aged paint models. A silicon drift detector (SDD) was employed to record the Cr-K XRF radiation in these X-ray micro beam-based measurements. However, in view of the limited count rate capabilities and collection solid angle of a single device, μ-XRF and μ-XANES employing single element SDDs (or similar) are primarily suited for collection of spectral data from individual points. Additionally, collection of XRF maps via point-by-point scanning with relatively long dwell times per point is possible but is usually confined to small areas. The development of the 384 silicon-diode array Maia XRF detector has provided valuable solutions in terms of data acquisition rate, allowing for full spectral (FS) XANES imaging in XRF mode, i.e., where spectroscopic information is available at each pixel in the scanned map. In this paper, the possibilities of SR Cr K-edge FS-XANES imaging in XRF mode using the Maia detector are examined as a new data collection strategy to study the speciation and distribution of alteration products of lead chromate-based pigments in painting materials. The results collected from two micro-samples taken from two Van Gogh paintings and an aged paint model show the possibility to perform FS-XANES imaging in practical time frames (from several minutes to a few hours) by scanning regions of sample sizes of the same order (more than 500 μm). The sensitivity and capabilities of FS-XANES imaging in providing representative chemical speciation information at the microscale (spatial resolution from ∼2 to 0.6 μm) over the entire scanned area are demonstrated by the identification of Cr(OH)3, Cr(III) sulfates and/or Cr(III) organometallic compounds in the corresponding phase maps, as alteration products. Comparable Cr-speciation results were obtained by performing equivalent higher spatial resolution SR μ-XRF/single-point μ-XANES analysis using a more conventional SDD from smaller regions of interest of each sample. Thus, large-area XRF mode FS-XANES imaging (Maia detector) is here proposed as a valuable and complementary data collection strategy in relation to “zoomed-in” high-resolution μ-XRF mapping and single-point μ-XANES analysis (SDD).
Angewandte Chemie | 2015
Letizia Monico; Koen Janssens; Ella Hendriks; Frederik Vanmeert; Geert Van der Snickt; Marine Cotte; Gerald Falkenberg; Brunetto Giovanni Brunetti; Costanza Miliani
This paper presents firm evidence for the chemical alteration of chrome yellow pigments in Van Goghs Sunflowers (Van Gogh Museum, Amsterdam). Noninvasive in situ spectroscopic analysis at several spots on the painting, combined with synchrotron-radiation-based X-ray investigations of two microsamples, revealed the presence of different types of chrome yellow used by Van Gogh, including the lightfast PbCrO4 and the sulfur-rich PbCr1-x Sx O4 (x≈0.5) variety that is known for its high propensity to undergo photoinduced reduction. The products of this degradation process, i.e., Cr(III) compounds, were found at the interface between the paint and the varnish. Selected locations of the painting with the highest risk of color modification by chemical deterioration of chrome yellow are identified, thus calling for careful monitoring in the future.
Analytical Chemistry | 2014
Letizia Monico; Koen Janssens; Frederik Vanmeert; Marine Cotte; Brunetto Giovanni Brunetti; Geert Van der Snickt; Margje Leeuwestein; Johanna Salvant Plisson; Michel Menu; Costanza Miliani
The darkening of lead chromate yellow pigments, caused by a reduction of the chromate ions to Cr(III) compounds, is known to affect the appearance of several paintings by Vincent van Gogh. In previous papers of this series, we demonstrated that the darkening is activated by light and depends on the chemical composition and crystalline structure of the pigments. In this work, the results of Part 2 are extended and complemented with a new study aimed at deepening the knowledge of the nature and distribution of Cr and S species at the interface between the chrome yellow paint and the nonoriginal coating layer. For this purpose, three microsamples from two varnished paintings by Van Gogh and a waxed low relief by Gauguin (all originally uncoated) have been examined. Because nonoriginal coatings are often present in artwork by Van Gogh and contemporaries, the understanding of whether or not their application has influenced the morphological and/or physicochemical properties of the chrome yellow paint underneath is relevant in view of the conservation of these masterpieces. In all the samples studied, microscopic X-ray fluorescence (μ-XRF) and X-ray absorption near edge structure (μ-XANES) investigations showed that Cr(III)-based alteration products are present in the form of grains inside the coating (generally enriched of S species) and also homogeneously widespread at the paint surface. The distribution of Cr(III) species may be explained by the mechanical friction caused by the coating application by brush that picked up and redistributed the superficial Cr compounds, likely already present in the reduced state as result of the photodegradation process. The analysis of the XANES profiles allowed us to obtain new insights into the nature of the Cr(III) alteration products, that were identified as sulfate-, oxide-, organo-metal-, and chloride-based compounds. Building upon the knowledge acquired through the examination of original paint samples and from the investigation of aged model paints in the last Part 4 paper, in this study we aim to characterize a possible relation between the chemical composition of the coating and the chrome yellow degradation pathways by studying photochemically aged model samples covered with a dammar varnish contaminated with sulfide and sulfate salts. Cr speciation results did not show any evidence of the active role of the varnish and added S species on the reduction process of chrome yellows.
Journal of Analytical Atomic Spectrometry | 2015
Letizia Monico; Koen Janssens; Marine Cotte; A. Romani; Lorenzo Sorace; Chiara Grazia; Brunetto Giovanni Brunetti; Costanza Miliani
Correction for ‘Synchrotron-based X-ray spectromicroscopy and electron paramagnetic resonance spectroscopy to investigate the redox properties of lead chromate pigments under the effect of visible light’ by Letizia Monico et al., J. Anal. At. Spectrom., 2015, 30, 1500–1510.
Journal of Analytical Atomic Spectrometry | 2017
Marine Cotte; Emeline Pouyet; Murielle Salomé; Camille Rivard; Wout De Nolf; Hiram Castillo-Michel; Tiphaine Fabris; Letizia Monico; Koen Janssens; Tian Wang; Philippe Sciau; Louisiane Verger; Laurent Cormier; Olivier Dargaud; Emmanuel Brun; David Bugnazet; Barbara Fayard; Bernhard Hesse; Ana Elena Pradas del Real; Giulia Veronesi; Juliette Langlois; Nathalie Balcar; Yannick Vandenberghe; Vicente A. Solé; Jérôme Kieffer; Ray Barrett; Cédric Cohen; Claude Cornu; Robert Baker; Eric Gagliardini
The ID21 beamline (European Synchrotron Radiation facility, France) is a multi micro-analytical platform combining X-ray and infrared micro-probes, for characterization of elements, species, molecular groups and crystalline structures in complex materials. Applications are mainly in the fields of cultural heritage, life science, environmental and earth sciences, materials sciences. Here, we first present the status of instruments: (i) the scanning micro-spectroscopy end-station, operating from 2.0 to 9.2 keV, under vacuum and offering cryo conditions, for the acquisition of 2D micro X-ray fluorescence (μXRF) maps, single point micro X-ray Absorption Near Edge Structure (μXANES) spectra and speciation maps with sub-micrometric resolution; (ii) the XANES full-field end-station, operating in the same vacuum and energy conditions, for the acquisition of hyper-spectral radiographs of thin concentrated samples, resulting in speciation maps with micrometric resolution and millimetric field of view; (iii) the scanning micro-X-ray diffraction (μXRD)/μXRF end-station, operating at 8.5 keV, in air, for the acquisition of 2D crystalline phase maps, with micrometric resolution; and (iv) the scanning infrared microscope, operating in the mid-infrared range for the acquisition of molecular maps and some structural maps with micrometric resolution. Recent hardware and software developments are presented, as well as new protocols for improved sample preparation of thin sections. Secondly, a review of recent applications for the study of cultural heritage is presented, illustrated by various examples: determination of the origin of the color in blue Chinese porcelains and in brown Sevres porcelains; detection of lead in ink on Herculaneum papyri; identification and degradation of modeling materials used by Auguste Rodin and of chrome yellow pigments used by Vincent van Gogh. Cryo capabilities are illustrated by the analysis of plants exposed to chromate solutions. These examples show the variety of materials analyzed, of questions tackled, and particularly the multiple advantages of the ID21 analytical platform for the analysis of ancient and artistic materials.