Letizia Trevisi
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Letizia Trevisi.
Genome Biology | 2016
Anna K. Knight; Jeffrey M. Craig; Christiane Theda; Marie Bækvad-Hansen; Jonas Bybjerg-Grauholm; Christine Søholm Hansen; Mads V. Hollegaard; David M. Hougaard; Preben Bo Mortensen; Shantel M. Weinsheimer; Thomas Werge; Patricia A. Brennan; Joseph F. Cubells; D. Jeffrey Newport; Zachary N. Stowe; Jeanie L.Y. Cheong; Philippa Dalach; Lex W. Doyle; Yuk Jing Loke; Andrea Baccarelli; Allan C. Just; Robert O. Wright; Mara M. Téllez-Rojo; Katherine Svensson; Letizia Trevisi; Elizabeth M. Kennedy; Elisabeth B. Binder; Stella Iurato; Darina Czamara; Katri Räikkönen
BackgroundGestational age is often used as a proxy for developmental maturity by clinicians and researchers alike. DNA methylation has previously been shown to be associated with age and has been used to accurately estimate chronological age in children and adults. In the current study, we examine whether DNA methylation in cord blood can be used to estimate gestational age at birth.ResultsWe find that gestational age can be accurately estimated from DNA methylation of neonatal cord blood and blood spot samples. We calculate a DNA methylation gestational age using 148 CpG sites selected through elastic net regression in six training datasets. We evaluate predictive accuracy in nine testing datasets and find that the accuracy of the DNA methylation gestational age is consistent with that of gestational age estimates based on established methods, such as ultrasound. We also find that an increased DNA methylation gestational age relative to clinical gestational age is associated with birthweight independent of gestational age, sex, and ancestry.ConclusionsDNA methylation can be used to accurately estimate gestational age at or near birth and may provide additional information relevant to developmental stage. Further studies of this predictor are warranted to determine its utility in clinical settings and for research purposes. When clinical estimates are available this measure may increase accuracy in the testing of hypotheses related to developmental age and other early life circumstances.
Molecular Psychiatry | 2018
Chunyu Liu; Riccardo E. Marioni; Åsa K. Hedman; L Pfeiffer; Pei-Chien Tsai; Lindsay M. Reynolds; Allan C. Just; Qing Duan; C.G. Boer; T. Tanaka; Cathy E. Elks; Stella Aslibekyan; Jennifer A. Brody; Brigitte Kühnel; Christian Herder; Lynn M. Almli; Degui Zhi; Yunfei Wang; Tianxiao Huan; Chen Yao; Michael M. Mendelson; Roby Joehanes; Liming Liang; S-A Love; Weihua Guan; Sonia Shah; Allan F. McRae; Anja Kretschmer; Holger Prokisch; Konstantin Strauch
The lack of reliable measures of alcohol intake is a major obstacle to the diagnosis and treatment of alcohol-related diseases. Epigenetic modifications such as DNA methylation may provide novel biomarkers of alcohol use. To examine this possibility, we performed an epigenome-wide association study of methylation of cytosine-phosphate-guanine dinucleotide (CpG) sites in relation to alcohol intake in 13 population-based cohorts (ntotal=13 317; 54% women; mean age across cohorts 42–76 years) using whole blood (9643 European and 2423 African ancestries) or monocyte-derived DNA (588 European, 263 African and 400 Hispanic ancestry) samples. We performed meta-analysis and variable selection in whole-blood samples of people of European ancestry (n=6926) and identified 144 CpGs that provided substantial discrimination (area under the curve=0.90–0.99) for current heavy alcohol intake (⩾42 g per day in men and ⩾28 g per day in women) in four replication cohorts. The ancestry-stratified meta-analysis in whole blood identified 328 (9643 European ancestry samples) and 165 (2423 African ancestry samples) alcohol-related CpGs at Bonferroni-adjusted P<1 × 10−7. Analysis of the monocyte-derived DNA (n=1251) identified 62 alcohol-related CpGs at P<1 × 10-7. In whole-blood samples of people of European ancestry, we detected differential methylation in two neurotransmitter receptor genes, the γ-Aminobutyric acid-A receptor delta and γ-aminobutyric acid B receptor subunit 1; their differential methylation was associated with expression levels of a number of genes involved in immune function. In conclusion, we have identified a robust alcohol-related DNA methylation signature and shown the potential utility of DNA methylation as a clinically useful diagnostic test to detect current heavy alcohol consumption.
Circulation | 2016
Jia Zhong; Akin Cayir; Letizia Trevisi; Marco Sanchez-Guerra; Xinyi Lin; Cheng Peng; Marie-Abele Bind; Diddier Prada; Hannah Laue; Kasey J. Brennan; Alexandra E. Dereix; David Sparrow; Pantel S. Vokonas; Joel Schwartz; Andrea Baccarelli
Background— Exposure to black carbon (BC), a tracer of vehicular-traffic pollution, is associated with increased blood pressure (BP). Identifying biological factors that attenuate BC effects on BP can inform prevention. We evaluated the role of mitochondrial abundance, an adaptive mechanism compensating for cellular-redox imbalance, in the BC-BP relationship. Methods and Results— At ≥1 visits among 675 older men from the Normative Aging Study (observations=1252), we assessed daily BP and ambient BC levels from a stationary monitor. To determine blood mitochondrial abundance, we used whole blood to analyze mitochondrial-to-nuclear DNA ratio (mtDNA/nDNA) using quantitative polymerase chain reaction. Every standard deviation increase in the 28-day BC moving average was associated with 1.97 mm Hg (95% confidence interval [CI], 1.23–2.72; P<0.0001) and 3.46 mm Hg (95% CI, 2.06–4.87; P<0.0001) higher diastolic and systolic BP, respectively. Positive BC-BP associations existed throughout all time windows. BC moving averages (5-day to 28-day) were associated with increased mtDNA/nDNA; every standard deviation increase in 28-day BC moving average was associated with 0.12 standard deviation (95% CI, 0.03–0.20; P=0.007) higher mtDNA/nDNA. High mtDNA/nDNA significantly attenuated the BC-systolic BP association throughout all time windows. The estimated effect of 28-day BC moving average on systolic BP was 1.95-fold larger for individuals at the lowest mtDNA/nDNA quartile midpoint (4.68 mm Hg; 95% CI, 3.03–6.33; P<0.0001), in comparison with the top quartile midpoint (2.40 mm Hg; 95% CI, 0.81–3.99; P=0.003). Conclusions— In older adults, short-term to moderate-term ambient BC levels were associated with increased BP and blood mitochondrial abundance. Our findings indicate that increased blood mitochondrial abundance is a compensatory response and attenuates the cardiac effects of BC.
Environmental Health Perspectives | 2016
Cheng Peng; Marie-Abele Bind; Elena Colicino; Itai Kloog; Hyang-Min Byun; Laura Cantone; Letizia Trevisi; Jia Zhong; Kasey J. Brennan; Alexandra E. Dereix; Pantel S. Vokonas; Brent A. Coull; Joel Schwartz; Andrea Baccarelli
Background: Among nondiabetic individuals, higher fasting blood glucose (FBG) independently predicts diabetes risk, cardiovascular disease, and dementia. Ambient PM2.5 (particulate matter with aerodynamic diameter ≤ 2.5 μm) is an emerging determinant of glucose dysregulation. PM2.5 effects and mechanisms are understudied among nondiabetic individuals. Objectives: Our goals were to investigate whether PM2.5 is associated with an increase in FBG and to explore potential mediating roles of epigenetic gene regulation. Methods: In 551 nondiabetic participants in the Normative Aging Study, we measured FBG, and DNA methylation of four inflammatory genes (IFN-γ, IL-6, ICAM-1, and TLR-2), up to four times between 2000 and 2011 (median = 2). We estimated short- and medium-term (1-, 7-, and 28-day preceding each clinical visit) ambient PM2.5 at each participant’s address using a validated hybrid land-use regression satellite-based model. We fitted covariate-adjusted regression models accounting for repeated measures. Results: Mean FBG was 99.8 mg/dL (SD = 10.7), 18% of the participants had impaired fasting glucose (IFG; i.e., 100–125 mg/dL FBG) at first visit. Interquartile increases in 1-, 7-, and 28-day PM2.5 were associated with 0.57 mg/dL (95% CI: 0.02, 1.11, p = 0.04), 1.02 mg/dL (95% CI: 0.41, 1.63, p = 0.001), and 0.89 mg/dL (95% CI: 0.32, 1.47, p = 0.003) higher FBG, respectively. The same PM2.5 metrics were associated with 13% (95% CI: –3%, 33%, p = 0.12), 27% (95% CI: 6%, 52%, p = 0.01) and 32% (95% CI: 10%, 58%, p = 0.003) higher odds of IFG, respectively. PM2.5 was negatively correlated with ICAM-1 methylation (p = 0.01), but not with other genes. Mediation analysis estimated that ICAM-1 methylation mediated 9% of the association of 28-day PM2.5 with FBG. Conclusions: Among nondiabetics, short- and medium-term PM2.5 were associated with higher FBG. Mediation analysis indicated that part of this association was mediated by ICAM-1 promoter methylation. Citation: Peng C, Bind MA, Colicino E, Kloog I, Byun HM, Cantone L, Trevisi L, Zhong J, Brennan K, Dereix AE, Vokonas PS, Coull BA, Schwartz JD, Baccarelli AA. 2016. Particulate air pollution and fasting blood glucose in nondiabetic individuals: associations and epigenetic mediation in the Normative Aging Study, 2000–2011. Environ Health Perspect 124:1715–1721; http://dx.doi.org/10.1289/EHP183
Journal of the American Heart Association | 2015
Jia Zhong; Elena Colicino; Xinyi Lin; Amar J. Mehta; Itai Kloog; Antonella Zanobetti; Hyang-Min Byun; Marie-Abele Bind; Laura Cantone; Diddier Prada; Letizia Tarantini; Letizia Trevisi; David Sparrow; Pantel S. Vokonas; Joel Schwartz; Andrea Baccarelli
Background Short‐term fine particles (PM2.5) exposure is associated with reduced heart rate variability, a strong predictor of cardiac mortality among older people. Identifying modifiable factors that confer susceptibility is essential for intervention. We evaluated whether Toll‐like receptor 2 (TLR2) methylation, a reversible immune‐epigenetic process, and its dietary modulation by flavonoids and methyl nutrients, modify susceptibility to heart rate variability effects following PM2.5 exposure. Methods and Results We measured heart rate variability and PM2.5 repeatedly over 11 years (1275 total observations) among 573 elderly men from the Normative Aging Study. Blood TLR2 methylation was analyzed using pyrosequencing. Daily flavonoid and methyl nutrients intakes were assessed through the Food Frequency Questionnaire (FFQ). Every 10 μg/m3 increase in 48‐hour PM2.5 moving average was associated with 7.74% (95% CI: −1.21% to 15.90%; P=0.09), 7.46% (95% CI: 0.99% to 13.50%; P=0.02), 14.18% (95% CI: 1.14% to 25.49%; P=0.03), and 12.94% (95% CI: −2.36% to 25.96%; P=0.09) reductions in root mean square of successive differences, standard deviation of normal‐to‐normal intervals, low‐frequency power, and high‐frequency power, respectively. Higher TLR2 methylation exacerbated the root mean square of successive differences, standard deviation of normal‐to‐normal intervals, low‐frequency, and high‐frequency reductions associated with heightened PM2.5 (Pinteraction=0.006, 0.03, 0.05, 0.04, respectively). Every interquartile‐range increase in flavonoid intake was associated with 5.09% reduction in mean TLR2 methylation (95% CI: 0.12% to 10.06%; P=0.05) and counteracted the effects of PM2.5 on low frequency (Pinteraction=0.05). No significant effect of methyl nutrients on TLR2 methylation was observed. Conclusions Higher TLR2 methylation may confer susceptibility to adverse cardiac autonomic effects of PM2.5 exposure in older individuals. Higher flavonoid intake may attenuate these effects, possibly by decreasing TLR2 methylation.
Journal of the American Heart Association | 2016
Hyang-Min Byun; Elena Colicino; Letizia Trevisi; Tianteng Fan; David C. Christiani; Andrea Baccarelli
Background The mitochondrion is the primary target of oxidative stress in response to exogenous environments. Mitochondrial DNA (mtDNA) is independent from nuclear DNA and uses separate epigenetic machinery to regulate mtDNA methylation. The mtDNA damage induced by oxidative stress can cause mitochondrial dysfunction and is implicated in human diseases; however, mtDNA methylation has been largely overlooked in environmental studies relating to human disease. The purpose of this study was to examine the association between exposure to fine metal‐rich particulates (particulate matter <2.5 µm in diameter [PM 2.5]) from welding in a boilermaker union and blood mtDNA methylation in relation to heart rate variability. Methods and Results Forty‐eight healthy men were recruited on multiple sampling cycles at the Boilermaker Union Local 29, located in Quincy, Massachusetts. We measured personal PM 2.5 in the background ambient environment. We measured blood mtDNA methylation in the mtDNA promoter (D‐loop) and genes essential for ATP synthesis (MT‐TF and MT‐RNR1) by bisulfite pyrosequencing. All analyses were adjusted for demographics, type of job, season, welding‐work day, and mtDNA methylation experimental batch effect. The participants’ PM 2.5 exposure was significantly higher after a welding‐work day (mean 0.38 mg/m3) than the background personal level (mean 0.15 mg/m3, P<0.001). Blood mtDNA methylation in the D‐loop promoter was associated with PM 2.5 levels (β=−0.99%, SE=0.41, P=0.02). MT‐TF and MT‐RNR1 methylation was not associated with PM 2.5 exposure (β=0.10%, SE=0.45, P=0.82). Interaction of PM 2.5 exposure levels and D‐loop promoter methylation was significantly associated with markers of heart rate variability. Conclusions Blood mtDNA methylation levels were negatively associated with PM 2.5 exposure and modified the adverse relationships between PM 2.5 exposure and heart rate variability outcomes.
Oncotarget | 2016
Cavin K. Ward-Caviness; Jamaji C. Nwanaji-Enwerem; Kathrin Wolf; Simone Wahl; Elena Colicino; Letizia Trevisi; Itai Kloog; Allan C. Just; Pantel S. Vokonas; Josef Cyrys; Christian Gieger; Joel Schwartz; Andrea Baccarelli; Alexandra Schneider; Annette Peters
Long-term exposure to air pollution is associated with age-related diseases. We explored the association between accelerated biological aging and air pollution, a potential mechanism linking air pollution and health. We estimated long-term exposure to PM10, PM2.5, PM2.5 absorbance/black carbon (BC), and NOx via land-use regression models in individuals from the KORA F4 cohort. Accelerated biological aging was assessed using telomere length (TeloAA) and three epigenetic measures: DNA methylation age acceleration (DNAmAA), extrinsic epigenetic age acceleration (correlated with immune cell counts, EEAA), and intrinsic epigenetic age acceleration (independent of immune cell counts, IEAA). We also investigated sex-specific associations between air pollution and biological aging, given the published association between sex and aging measures. In KORA an interquartile range (0.97 μg/m3) increase in PM2.5 was associated with a 0.33 y increase in EEAA (CI = 0.01, 0.64; P = 0.04). BC and NOx (indicators or traffic exposure) were associated with DNAmAA and IEAA in women, while TeloAA was inversely associated with BC in men. We replicated this inverse BC-TeloAA association in the Normative Aging Study, a male cohort based in the USA. A multiple phenotype analysis in KORA F4 combining all aging measures showed that BC and PM10 were broadly associated with biological aging in men. Thus, we conclude that long-term exposure to air pollution is associated with biological aging measures, potentially in a sex-specific manner. However, many of the associations were relatively weak and further replication of overall and sex-specific associations is warranted.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Jia Zhong; Oskar Karlsson; Guan Wang; Jun Li; Yichen Guo; Xinyi Lin; Michele Zemplenyi; Marco Sanchez-Guerra; Letizia Trevisi; Bruce Urch; Mary Speck; Liming Liang; Brent A. Coull; Petros Koutrakis; Frances Silverman; Diane R. Gold; Tangchun Wu; Andrea Baccarelli
Significance Air pollution is a major public health concern worldwide. The molecular mechanistic underpinnings of the health effects of air pollution are not fully understood, and the lack of individual-level preventative options represent a critical knowledge gap. Our study demonstrated the epigenetic effects of air pollution and suggested that B vitamins might be used as prevention to complement regulations to attenuate the impact of air pollution on the epigenome. Our study inaugurated a line of research for the development of preventive interventions to minimize the adverse effects of air pollution on potential mechanistic markers. Because of the central role of epigenetic modifications in mediating environmental effects, our findings might be extended to other toxicants and environmental diseases. Acute exposure to fine particle (PM2.5) induces DNA methylation changes implicated in inflammation and oxidative stress. We conducted a crossover trial to determine whether B-vitamin supplementation averts such changes. Ten healthy adults blindly received a 2-h, controlled-exposure experiment to sham under placebo, PM2.5 (250 μg/m3) under placebo, and PM2.5 (250 μg/m3) under B-vitamin supplementation (2.5 mg/d folic acid, 50 mg/d vitamin B6, and 1 mg/d vitamin B12), respectively. We profiled epigenome-wide methylation before and after each experiment using the Infinium HumanMethylation450 BeadChip in peripheral CD4+ T-helper cells. PM2.5 induced methylation changes in genes involved in mitochondrial oxidative energy metabolism. B-vitamin supplementation prevented these changes. Likewise, PM2.5 depleted 11.1% [95% confidence interval (CI), 0.4%, 21.7%; P = 0.04] of mitochondrial DNA content compared with sham, and B-vitamin supplementation attenuated the PM2.5 effect by 102% (Pinteraction = 0.01). Our study indicates that individual-level prevention may be used to complement regulations and control potential mechanistic pathways underlying the adverse PM2.5 effects, with possible significant public health benefit in areas with frequent PM2.5 peaks.
Environmental Epigenetics | 2016
Jamaji C. Nwanaji-Enwerem; Elena Colicino; Letizia Trevisi; Itai Kloog; Allan C. Just; Jincheng Shen; Kasey J. Brennan; Alexandra E. Dereix; Lifang Hou; Pantel S. Vokonas; Joel Schwartz; Andrea Baccarelli
Abstract Background: Ambient particles have been shown to exacerbate measures of biological aging; yet, no studies have examined their relationships with DNA methylation age (DNAm-age), an epigenome-wide DNA methylation based predictor of chronological age. Objective: We examined the relationship of DNAm-age with fine particulate matter (PM2.5), a measure of total inhalable particle mass, and black carbon (BC), a measure of particles from vehicular traffic. Methods: We used validated spatiotemporal models to generate 1-year PM2.5 and BC exposure levels at the addresses of 589 older men participating in the VA Normative Aging Study with 1–3 visits between 2000 and 2011 (n = 1032 observations). Blood DNAm-age was calculated using 353 CpG sites from the Illumina HumanMethylation450 BeadChip. We estimated associations of PM2.5 and BC with DNAm-age using linear mixed effects models adjusted for age, lifestyle/environmental factors, and aging-related diseases. Results: After adjusting for covariates, a 1-μg/m3 increase in PM2.5 (95% CI: 0.30, 0.75, P < 0.0001) was significantly associated with a 0.52-year increase in DNAm-age. Adjusted BC models showed similar patterns of association (β = 3.02, 95% CI: 0.48, 5.57, P = 0.02). Only PM2.5 (β = 0.54, 95% CI: 0.24, 0.84, P = 0.0004) remained significantly associated with DNAm-age in two-particle models. Methylation levels from 20 of the 353 CpGs contributing to DNAm-age were significantly associated with PM2.5 levels in our two-particle models. Several of these CpGs mapped to genes implicated in lung pathologies including LZTFL1, PDLIM5, and ATPAF1. Conclusion: Our results support an association of long-term ambient particle levels with DNAm-age and suggest that DNAm-age is a biomarker of particle-related physiological processes.
Epigenomics | 2017
Margherita M. De Carli; Andrea Baccarelli; Letizia Trevisi; Ivan Pantic; Kasey J. Brennan; Michele R. Hacker; Holly Loudon; Kelly J. Brunst; Robert O. Wright; Rosalind J. Wright; Allan C. Just
AIM We compared predictive modeling approaches to estimate placental methylation using cord blood methylation. MATERIALS & METHODS We performed locus-specific methylation prediction using both linear regression and support vector machine models with 174 matched pairs of 450k arrays. RESULTS At most CpG sites, both approaches gave poor predictions in spite of a misleading improvement in array-wide correlation. CpG islands and gene promoters, but not enhancers, were the genomic contexts where the correlation between measured and predicted placental methylation levels achieved higher values. We provide a list of 714 sites where both models achieved an R2 ≥0.75. CONCLUSION The present study indicates the need for caution in interpreting cross-tissue predictions. Few methylation sites can be predicted between cord blood and placenta.