Letizia Zullo
Istituto Italiano di Tecnologia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Letizia Zullo.
Current Biology | 2009
Letizia Zullo; German Sumbre; Claudio Agnisola; Tamar Flash; Binyamin Hochner
Hyperredundant limbs with a virtually unlimited number of degrees of freedom (DOFs) pose a challenge for both biological and computational systems of motor control. In the flexible arms of the octopus, simplification strategies have evolved to reduce the number of controlled DOFs. Motor control in the octopus nervous system is hierarchically organized. A relatively small central brain integrates a huge amount of visual and tactile information from the large optic lobes and the peripheral nervous system of the arms and issues commands to lower motor centers controlling the elaborated neuromuscular system of the arms. This unique organization raises new questions on the organization of the octopus brain and whether and how it represents the rich movement repertoire. We developed a method of brain microstimulation in freely behaving animals and stimulated the higher motor centers-the basal lobes-thus inducing discrete and complex sets of movements. As stimulation strength increased, complex movements were recruited from basic components shared by different types of movement. We found no stimulation site where movements of a single arm or body part could be elicited. Discrete and complex components have no central topographical organization but are distributed over wide regions.
Communicative & Integrative Biology | 2011
Letizia Zullo; Binyamin Hochner
The concept of ‘embodiment’ and its implications for the evolution of cognitive capacities is emerging as a major issue in biology. Invertebrates have immensely diverse nervous structures and body plans, revealing the variety of solutions evolved by animals living successfully in all kind of niches. Among invertebrates, the octopus is a special case because of its high cognitive abilities and a uniquely flexible body and manoeuvrable arms with virtually infinite degrees of freedom. Here we discuss how the octopus embodiment may be considered a ‘key’ to the development of its neural organisation and cognitive abilities.
Molecular Neurobiology | 2015
Sara Fossati; Simona Candiani; Marie-Therese Nödl; Luca Maragliano; Maria Pennuto; Pedro Domingues; Fabio Benfenati; Mario Pestarino; Letizia Zullo
Acetylcholinesterase (ACHE) is a glycoprotein with a key role in terminating synaptic transmission in cholinergic neurons of both vertebrates and invertebrates. ACHE is also involved in the regulation of cell growth and morphogenesis during embryogenesis and regeneration acting through its non-cholinergic sites. The mollusk Octopus vulgaris provides a powerful model for investigating the mechanisms underlying tissue morphogenesis due to its high regenerative power. Here, we performed a comparative investigation of arm morphogenesis during adult arm regeneration and embryonic arm development which may provide insights on the conserved ACHE pathways. In this study, we cloned and characterized O. vulgaris ACHE, finding a single highly conserved ACHE hydrophobic variant, characterized by prototypical catalytic sites and a putative consensus region for a glycosylphosphatidylinositol (GPI)-anchor attachment at the COOH-terminus. We then show that its expression level is correlated to the stage of morphogenesis in both adult and embryonic arm. In particular, ACHE is localized in typical neuronal sites when adult-like arm morphology is established and in differentiating cell locations during the early stages of arm morphogenesis. This possibility is also supported by the presence in the ACHE sequence and model structure of both cholinergic and non-cholinergic sites. This study provides insights into ACHE conserved roles during processes of arm morphogenesis. In addition, our modeling study offers a solid basis for predicting the interaction of the ACHE domains with pharmacological blockers for in vivo investigations. We therefore suggest ACHE as a target for the regulation of tissue morphogenesis.
Evodevo | 2015
Marie-Therese Nödl; Sara Fossati; Pedro Domingues; Francisco J Sánchez; Letizia Zullo
BackgroundMost of our current findings on appendage formation and patterning stem from studies on chordate and ecdysozoan model organisms. However, in order to fully understand the evolution of animal appendages, it is essential to include information on appendage development from lophotrochozoan representatives. Here, we examined the basic dynamics of the Octopus vulgaris arm’s formation and differentiation - as a highly evolved member of the lophotrochozoan super phylum - with a special focus on the formation of the arm’s musculature.ResultsThe octopus arm forms during distinct phases, including an early outgrowth from an epithelial thickening, an elongation, and a late differentiation into mature tissue types. During early arm outgrowth, uniform proliferation leads to the formation of a rounded bulge, which subsequently elongates along its proximal-distal axis by means of actin-mediated epithelial cell changes. Further differentiation of all tissue layers is initiated but end-differentiation is postponed to post-hatching stages. Interestingly, muscle differentiation shows temporal differences in the formation of distinct muscle layers. Particularly, first myocytes appear in the area of the future transverse prior to the longitudinal muscle layer, even though the latter represents the more dominant muscle type at hatching stage. Sucker rudiments appear as small epithelial outgrowths with a mesodermal and ectodermal component on the oral part of the arm. During late differentiation stages, cell proliferation becomes localized to a distal arm region termed the growth zone of the arm.ConclusionsO. vulgaris arm formation shows both, similarities to known model species as well as species-specific patterns of arm formation. Similarities include early uniform cell proliferation and actin-mediated cell dynamics, which lead to an elongation along the proximal-distal axis. Furthermore, the switch to an adult-like progressive distal growth mode during late differentiation stages is reminiscent of the vertebrate progress zone. However, tissue differentiation shows a species-specific delay, which is correlated to a paralarval pelagic phase after hatching and concomitant emerging behavioral modifications. By understanding the general dynamics of octopus arm formation, we established a basis for further studies on appendage patterning, growth, and differentiation in a representative of the lophotrochozoan super phylum.
international conference on robotics and automation | 2012
Emanuele Guglielmino; Letizia Zullo; Matteo Cianchetti; Maurizio Follador; David T. Branson; Darwin G. Caldwell
This paper examines the design and control of a robotic arm inspired by the anatomy and neurophysiology of Octopus vulgaris in light of embodiment theory. Embodiment in an animal is defined as the dynamic coupling between sensorymotor control, anatomy, materials, and the environment that allows for the animal to achieve effective behaviour. Octopuses in particular are highly embodied and dexterous animals: their arms are fully flexible, can bend in any direction, grasp objects and modulate stiffness along their length. In this paper the biomechanics and neurophysiology of octopus have been analysed to extract relevant information for use in the design and control of an embodied soft robotic arm. The embodied design requirements are firstly defined, and how the biology of the octopus meets these requirements presented. Next, a prototype continuum arm and control architecture based on octopus biology, and meeting the design criteria, are presented. Finally, experimental results are presented to show how the developed prototype arm is able to reproduce motions performed by live octopus for contraction, elongation, bending, and grasping.
Frontiers in Cell and Developmental Biology | 2017
Letizia Zullo; Sara Fossati; Pamela Imperadore; Marie-Therese Nödl
The ability to regenerate whole-body structures has been studied for many decades and is of particular interest for stem cell research due to its therapeutic potential. Several vertebrate and invertebrate species have been used as model systems to study pathways involved in regeneration in the past. Among invertebrates, cephalopods are considered as highly evolved organisms, which exhibit elaborate behavioral characteristics when compared to other mollusks including active predation, extraordinary manipulation, and learning abilities. These are enabled by a complex nervous system and a number of adaptations of their body plan, which were acquired over evolutionary time. Some of these novel features show similarities to structures present in vertebrates and seem to have evolved through a convergent evolutionary process. Octopus vulgaris (the common octopus) is a representative of modern cephalopods and is characterized by a sophisticated motor and sensory system as well as highly developed cognitive capabilities. Due to its phylogenetic position and its high regenerative power the octopus has become of increasing interest for studies on regenerative processes. In this paper we provide an overview over the current knowledge of cephalopod muscle types and structures and present a possible link between these characteristics and their high regenerative potential. This may help identify conserved molecular pathways underlying regeneration in invertebrate and vertebrate animal species as well as discover new leads for targeted tissue treatments in humans.
Advances in Mechanical Engineering | 2016
Rongjie Kang; Emanuele Guglielmino; Letizia Zullo; David T. Branson; Isuru S. Godage; Darwin G. Caldwell
This article presents the results of a multidisciplinary project where mechatronic engineers worked alongside biologists to develop a soft robotic arm that captures key features of octopus anatomy and neurophysiology. The concept of embodiment (the dynamic coupling between sensory-motor control, anatomy, materials and environment that allows for the animal to achieve adaptive behaviours) is used as a starting point for the design process but tempered by current engineering technologies and approaches. In this article, the embodied design requirements are first discussed from a robotic viewpoint by taking into account real-life engineering limitations; then, the motor control schemes inspired by octopus nervous system are investigated. Finally, the mechanical and control design of a prototype is presented that appropriately blends bio-inspiration and engineering limitations. Simulated and experimental results show that the developed continuum robotic arm is able to reproduce octopus-like motions for bending, reaching and grasping.
PLOS ONE | 2012
Letizia Zullo; Michela Chiappalone; Sergio Martinoia; Fabio Benfenati
Developed biological systems are endowed with the ability of interacting with the environment; they sense the external state and react to it by changing their own internal state. Many attempts have been made to build ‘hybrids’ with the ability of perceiving, modifying and reacting to external modifications. Investigation of the rules that govern network changes in a hybrid system may lead to finding effective methods for ‘programming’ the neural tissue toward a desired task. Here we show a new perspective in the use of cortical neuronal cultures from embryonic mouse as a working platform to study targeted synaptic modifications. Differently from the common timing-based methods applied in bio-hybrids robotics, here we evaluated the importance of endogenous spike timing in the information processing. We characterized the influence of a spike-patterned stimulus in determining changes in neuronal synchronization (connectivity strength and precision) of the evoked spiking and bursting activity in the network. We show that tailoring the stimulation pattern upon a neuronal spike timing induces the network to respond stronger and more precisely to the stimulation. Interestingly, the induced modifications are conveyed more consistently in the burst timing. This increase in strength and precision may be a key in the interaction of the network with the external world and may be used to induce directional changes in bio-hybrid systems.
The Journal of Nuclear Medicine | 2018
Letizia Zullo; Ambra Buschiazzo; Michela Massollo; Mattia Riondato; Alessia Democrito; Cecilia Marini; Fabio Benfenati; Gianmario Sambuceti
This study aimed to develop a method of administering 18F-FDG to the common octopus in order to perform a PET biodistribution assay characterizing glucose metabolism in organs and regenerating tissues. Methods: Seven animals (two of which had a regenerating arm) were anesthetized with 3.7% MgCl2 in artificial seawater and then injected with 18–30 MBq of isosmotic 18F-FDG through either the left branchial heart or the anterior vena cava. After an uptake time of about 50 min, the animals were sacrificed and placed on the bed of a small-animal PET scanner, and 10-min static acquisitions were obtained at 3–4 bed positions to visualize the entire body. To confirm image interpretation, internal organs of interest were collected and counted with a γ-counter. Results: Administration through the anterior vena cava resulted in a good full-body distribution of 18F-FDG as seen on the PET images. Uptake was high in the mantle mass and relatively lower in the arms. In particular, the brain, optic lobes, and arms were clearly identified and were measured for their uptake (SUVmax: 6.57 ± 1.86, 7.59 ± 1.66, and 1.12 ± 0.06, respectively). Interestingly, 18F-FDG uptake was up to 3-fold higher in the highly proliferating areas of regenerating arms. Conclusion: This study represents a stepping-stone to the use of noninvasive functional techniques for addressing questions about invertebrate neuroscience and regenerative medicine.
intelligent robots and systems | 2013
Emanuele Guglielmino; Isuru S. Godage; Letizia Zullo; Darwin G. Caldwell
This paper presents the results of a multidisciplinary project where biologists, mechanical engineers and electronic engineers worked together to develop bio-inspired soft continuum arms, whose design captures and takes advantage of key features of the octopus anatomy and control. The cross-integration of such diverse expertise was channelled towards the design of soft continuum arms whose characteristics were inspired by nature, but with a focus on readily available engineering technologies and their effective integration from a system viewpoint. On one side the mechanical structure and the control was designed looking at the animal, in particular at the coupling between its anatomy and control system that allows the animal to survive in its ecosystem. On the other side engineering issues and constraints were carefully accounted for, namely material softness, intrinsic safety, energy efficiency, cost effectiveness and manufacturing aspects. The design evolution is presented through three different generations of prototypes where both bio-inspiration and engineering requirements are appropriately blended.