Letusa Albrecht
State University of Campinas
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Letusa Albrecht.
International Journal for Parasitology | 2012
Fabio T. M. Costa; Stefanie C. P. Lopes; Letusa Albrecht; Ricardo Ataíde; André Siqueira; Rodrigo M. Souza; Bruce Russell; Laurent Rénia; Claudio R. F. Marinho; Marcus V. G. Lacerda
Life-threatening Plasmodium vivax malaria cases, while uncommon, have been reported since the early 20th century. Unfortunately, the pathogenesis of these severe vivax malaria cases is still poorly understood. In Brazil, the proportion of vivax malaria cases has been steadily increasing, as have the number of cases presenting serious clinical complications. The most frequent syndromes associated with severe vivax malaria in Brazil are severe anaemia and acute respiratory distress. Additionally, P. vivax infection may also result in complications associated with pregnancy. Here, we review the latest findings on severe vivax malaria in Brazil. We also discuss how the development of targeted field research infrastructure in Brazil is providing clinical and ex vivo experimental data that benefits local and international efforts to understand the pathogenesis of P. vivax.
The Journal of Infectious Diseases | 2014
Stefanie C. P. Lopes; Letusa Albrecht; Bruna O. Carvalho; André Siqueira; Richard Thomson-Luque; Paulo Afonso Nogueira; Carmen Fernandez-Becerra; Hernando A. del Portillo; Bruce Russell; Laurent Rénia; Marcus V. G. Lacerda; Fabio T. M. Costa
There is now a growing body of evidence that challenges the current view that Plasmodium vivax-infected erythrocyte (Pv-iE) are unable to sequester. Here we used ex vivo adhesion assays with Pv-iE before and after maturation to demonstrate a higher binding potential of schizonts compared to other asexual stages. These experimental results are correlated with our observations in a panel of 50 vivax malaria patients where schizonts were completely absent in 27 isolates, and few schizonts were observed in the remaining patients. These observations prompt a paradigm shift in P. vivax biology and open avenues to investigate the role of Pv-iE sequestration.
Gene | 2010
Letusa Albrecht; Catarina Castiñeiras; Bruna O. Carvalho; Simone Ladeia-Andrade; Natal Santos da Silva; Erika H.E. Hoffmann; Rosimeire Cristina Dalla Martha; Fabio T. M. Costa; Gerhard Wunderlich
The Plasmodium falciparum var gene family encodes large variant antigens, which are important virulence factors, and also targets of the humoral host response. The frequently observed mild outcomes of falciparum malaria in many places of the Amazon area prompted us to ask whether a globally restricted variant (var) gene repertoire is present in currently circulating and older isolates of this area. By exhaustive analysis of var gene tags from 89 isolates and clones taken during many years from all over the Brazilian Amazon, we estimate that there are probably no more than 350-430 distinct sequence types, less than for any similar sized area studied so far. Detailed analysis of the var tags from genetically distinct clones obtained from single isolates revealed restricted and redundant repertoires suggesting either a low incidence of infective bites or restricted variant gene diversity in inoculated parasites. Additionally, we found a structuring of var gene repertoires observed as a higher pairwise typing sharing in isolates from the same microregion compared to isolates from different regions. Fine analysis of translated var tags revealed that certain Distinct Sequence Identifiers (DSIDs) were differently represented in Brazilian/South American isolates when compared to datasets from other continents. By global alignment of worldwide var DBLalpha sequences and sorting in groups with more than 76% identity, 125 clusters were formed and more than half of all genes were found in nine clusters with 50 or more sequences. While Brazilian/South American sequences were represented only in 64 groups, African sequences were found in the majority of clusters. DSID type 1 related sequences accumulated almost completely in one single cluster, indicating that limited recombination occurs in these specific var gene types. These data demonstrate the so far highest pairwise type sharing values for the var gene family in isolates from all over an entire subcontinent. The apparent lack of specific sequences types suggests that the P. falciparum transmission dynamics in the whole Amazon are probably different from any other endemic region studied and possibly interfere with the parasites ability to efficiently diversify its variant gene repertoires.
Blood | 2014
Wenn-Chyau Lee; Benoit Malleret; Yee Ling Lau; Marjorie Mauduit; Mun Yik Fong; Jee Sun Cho; Rossarin Suwanarusk; Rou Zhang; Letusa Albrecht; Fabio T. M. Costa; Peter Rainer Preiser; Rose McGready; Laurent Rénia; François Nosten; Bruce Russell
Rosetting phenomenon has been linked to malaria pathogenesis. Although rosetting occurs in all causes of human malaria, most data on this subject has been derived from Plasmodium falciparum. Here, we investigate the function and factors affecting rosette formation in Plasmodium vivax. To achieve this, we used a range of novel ex vivo protocols to study fresh and cryopreserved P vivax (n = 135) and P falciparum (n = 77) isolates from Thailand. Rosetting is more common in vivax than falciparum malaria, both in terms of incidence in patient samples and percentage of infected erythrocytes forming rosettes. Rosetting to P vivax asexual and sexual stages was evident 20 hours postreticulocyte invasion, reaching a plateau after 30 hours. Host ABO blood group, reticulocyte count, and parasitemia were not correlated with P vivax rosetting. Importantly, mature erythrocytes (normocytes), rather than reticulocytes, preferentially form rosetting complexes, indicating that this process is unlikely to directly facilitate merozoite invasion. Although antibodies against host erythrocyte receptors CD235a and CD35 had no effect, Ag-binding fragment against the BRIC 4 region of CD236R significantly inhibited rosette formation. Rosetting assays using CD236R knockdown normocytes derived from hematopoietic stem cells further supports the role of glycophorin C as a receptor in P vivax rosette formation.
Malaria Journal | 2008
Uta Gölnitz; Letusa Albrecht; Gerhard Wunderlich
BackgroundCytoadherence of Plasmodium falciparum-infected red blood cells is mediated by var gene-encoded P. falciparum erythrocyte membrane protein-1 and host receptor preference depends in most cases on which of the 50–60 var genes per genome is expressed. Enrichment of phenotypically homogenous parasites by panning on receptor expressing cells is fundamental for the identification of the corresponding var transcript.MethodsP. falciparum 3D7 parasites were panned on several transfected CHO-cell lines and their var transcripts analysed by i) reverse transcription/PCR/cloning/sequencing using a universal DBLα specific oligonucleotide pair and ii) by reverse transcription followed by quantitative PCR using 57 different oligonucleotide pairs.ResultsEach cytoadherence selected parasite line also adhered to untransfected CHO-745 cells and upregulation of the var gene PFD995/PFD1000c was consistently associated with cytoadherence to all but one CHO cell line. In addition, parasites panned on different CHO cell lines revealed candidate var genes which reproducibly associated to the respective cytoadherent phenotype. The transcription profile obtained by RT-PCR/cloning/sequencing differed significantly from that of RT-quantitative PCR.ConclusionTransfected CHO cell lines are of limited use for the creation of monophenotypic cytoadherent parasite lines. Nevertheless, 3D7 parasites can be reproducibly selected for the transcription of different determined var genes without genetic manipulation. Most importantly, var transcription analysis by RT-PCR/cloning/sequencing may lead to erroneous interpretation of var transcription profiles.
Antimicrobial Agents and Chemotherapy | 2014
Marcele F. Bastos; Letusa Albrecht; Eliene O. Kozlowski; Stefanie C. P. Lopes; Yara C. Blanco; Bianca Cechetto Carlos; Catarina Castiñeiras; Cristina P. Vicente; Claudio C. Werneck; Gerhard Wunderlich; Marcelo U. Ferreira; Claudio R. F. Marinho; Paulo A.S. Mourão; Mauro S. G. Pavão; Fabio T. M. Costa
ABSTRACT Sequestration of Plasmodium falciparum-infected erythrocytes (Pf-iEs) in the microvasculature of vital organs plays a key role in the pathogenesis of life-threatening malaria complications, such as cerebral malaria and malaria in pregnancy. This phenomenon is marked by the cytoadhesion of Pf-iEs to host receptors on the surfaces of endothelial cells, on noninfected erythrocytes, and in the placental trophoblast; therefore, these sites are potential targets for antiadhesion therapies. In this context, glycosaminoglycans (GAGs), including heparin, have shown the ability to inhibit Pf-iE cytoadherence and growth. Nevertheless, the use of heparin was discontinued due to serious side effects, such as bleeding. Other GAG-based therapies were hampered due to the potential risk of contamination with prions and viruses, as some GAGs are isolated from mammals. In this context, we investigated the effects and mechanism of action of fucosylated chondroitin sulfate (FucCS), a unique and highly sulfated GAG isolated from the sea cucumber, with respect to P. falciparum cytoadhesion and development. FucCS was effective in inhibiting the cytoadherence of Pf-iEs to human lung endothelial cells and placenta cryosections under static and flow conditions. Removal of the sulfated fucose branches of the FucCS structure virtually abolished the inhibitory effects of FucCS. Importantly, FucCS rapidly disrupted rosettes at high levels, and it was also able to block parasite development by interfering with merozoite invasion. Collectively, these findings highlight the potential of FucCS as a candidate for adjunct therapy against severe malaria.
Frontiers in Cellular and Infection Microbiology | 2016
Carla C. Judice; Catarina Bourgard; Ana Carolina A. V. Kayano; Letusa Albrecht; Fabio T. M. Costa
MicroRNAs (miRNAs), a class of small non-coding regulatory RNAs, have been detected in a variety of organisms ranging from ancient unicellular eukaryotes to mammals. They have been associated with numerous molecular mechanisms involving developmental, physiological and pathological changes of cells and tissues. Despite the fact that miRNA-silencing mechanisms appear to be absent in some Apicomplexan species, an increasing number of studies have reported a role for miRNAs in host-parasite interactions. Host miRNA expression can change following parasite infection and the consequences can lead, for instance, to parasite clearance. In this context, the immune system signaling appears to have a crucial role.
PLOS Neglected Tropical Diseases | 2016
Rou Zhang; Wenn-Chyau Lee; Yee Ling Lau; Letusa Albrecht; Stefanie C. P. Lopes; Fabio T. M. Costa; Rossarin Suwanarusk; François Nosten; Brian M. Cooke; Laurent Rénia; Bruce Russell
Malaria parasites dramatically alter the rheological properties of infected red blood cells. In the case of Plasmodium vivax, the parasite rapidly decreases the shear elastic modulus of the invaded RBC, enabling it to avoid splenic clearance. This study highlights correlation between rosette formation and altered membrane deformability of P. vivax-infected erythrocytes, where the rosette-forming infected erythrocytes are significantly more rigid than their non-rosetting counterparts. The adhesion of normocytes to the PvIRBC is strong (mean binding force of 440pN) resulting in stable rosette formation even under high physiological shear flow stress. Rosetting may contribute to the sequestration of PvIRBC schizonts in the host microvasculature or spleen.
Infection and Immunity | 2015
Juliana A. Leite; Daniel Y. Bargieri; Bruna O. Carvalho; Letusa Albrecht; Stefanie Costa Pinto Lopes; Ana Carolina A. V. Kayano; Alessandro S. Farias; Wan Ni Chia; Carla Claser; Benoit Malleret; Bruce Russell; Catarina Castiñeiras; Leonilda M.B. Santos; Marcelo Brocchi; Gerhard Wunderlich; Irene S. Soares; Mauricio M. Rodrigues; Laurent Rénia; Fabio T. M. Costa
ABSTRACT Malaria remains a world-threatening disease largely because of the lack of a long-lasting and fully effective vaccine. MAEBL is a type 1 transmembrane molecule with a chimeric cysteine-rich ectodomain homologous to regions of the Duffy binding-like erythrocyte binding protein and apical membrane antigen 1 (AMA1) antigens. Although MAEBL does not appear to be essential for the survival of blood-stage forms, ectodomains M1 and M2, homologous to AMA1, seem to be involved in parasite attachment to erythrocytes, especially M2. MAEBL is necessary for sporozoite infection of mosquito salivary glands and is expressed in liver stages. Here, the Plasmodium yoelii MAEBL-M2 domain was expressed in a prokaryotic vector. C57BL/6J mice were immunized with doses of P. yoelii recombinant protein rPyM2-MAEBL. High levels of antibodies, with balanced IgG1 and IgG2c subclasses, were achieved. rPyM2-MAEBL antisera were capable of recognizing the native antigen. Anti-MAEBL antibodies recognized different MAEBL fragments expressed in CHO cells, showing stronger IgM and IgG responses to the M2 domain and repeat region, respectively. After a challenge with P. yoelii YM (lethal strain)-infected erythrocytes (IE), up to 90% of the immunized animals survived and a reduction of parasitemia was observed. Moreover, splenocytes harvested from immunized animals proliferated in a dose-dependent manner in the presence of rPyM2-MAEBL. Protection was highly dependent on CD4+, but not CD8+, T cells toward Th1. rPyM2-MAEBL antisera were also able to significantly inhibit parasite development, as observed in ex vivo P. yoelii erythrocyte invasion assays. Collectively, these findings support the use of MAEBL as a vaccine candidate and open perspectives to understand the mechanisms involved in protection.
Memorias Do Instituto Oswaldo Cruz | 2012
Mauro Shugiro Tada; Ricardo de Godoi Mattos Ferreira; Tony Hiroshi Katsuragawa; Rosimeire Cristina Dalla Martha; Joana D'Arc Neves Costa; Letusa Albrecht; Gerhard Wunderlich; Luiz Hildebrando Pereira da Silva
In this study, we determined whether the treatment of asymptomatic parasites carriers (APCs), which are frequently found in the riverside localities of the Brazilian Amazon that are highly endemic for malaria, would decrease the local malaria incidence by decreasing the overall pool of parasites available to infect mosquitoes. In one village, the treatment of the 19 Plasmodium falciparum-infected APCs identified among the 270 residents led to a clear reduction (Z = -2.39, p = 0.017) in the incidence of clinical cases, suggesting that treatment of APCs is useful for controlling falciparum malaria. For vivax malaria, 120 APCs were identified among the 716 residents living in five villages. Comparing the monthly incidence of vivax malaria in two villages where the APCs were treated with the incidence in two villages where APCs were not treated yielded contradictory results and no clear differences in the incidence were observed (Z = -0.09, p = 0.933). Interestingly, a follow-up study showed that the frequency of clinical relapse in both the treated and untreated APCs was similar to the frequency seen in patients treated for primary clinical infections, thus indicating that vivax clinical immunity in the population is not species specific but only strain specific.