Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Levi M. Stanley is active.

Publication


Featured researches published by Levi M. Stanley.


Accounts of Chemical Research | 2010

Mechanistically Driven Development of Iridium Catalysts for Asymmetric Allylic Substitution

John F. Hartwig; Levi M. Stanley

Enantioselective allylic substitution reactions comprise some of the most versatile methods for preparing enantiomerically enriched materials. These reactions form products that contain multiple functionalities by creating carbon-nitrogen, carbon-oxygen, carbon-carbon, and carbon-sulfur bonds. For many years, the development of catalysts for allylic substitution focused on palladium complexes. However, studies of complexes of other metals have revealed selectivities that often complement those of palladium systems. Most striking is the observation that reactions with unsymmetrical allylic electrophiles that typically occur with palladium catalysts at the less hindered site of an allylic electrophile occur at the more hindered site with catalysts based on other metals. In this Account, we describe the combination of an iridium precursor and a phosphoramidite ligand that catalyzes enantioselective allylic substitution reactions with a particularly broad scope of nucleophiles. The active form of this iridium catalyst is not generated by the simple binding of the phosphoramidite ligand to the metal precursor. Instead, the initial phosphoramidite and iridium precursor react in the presence of base to form a metallacyclic species that is the active catalyst. This species is generated either in situ or separately in isolated form by reactions with added base. The identification of the structure of the active catalyst led to the development of simplified catalysts as well as the most active form of the catalyst now available, which is stabilized by a loosely bound ethylene. Most recently, this structure was used to prepare intermediates containing allyl ligands, the structures of which provide a model for the enantioselectivities discussed here. Initial studies from our laboratory on the scope of iridium-catalyzed allylic substitution showed that reactions of primary and secondary amines, including alkylamines, benzylamines, and allylamines, and reactions of phenoxides and alkoxides occurred in high yields, with high branched-to-linear ratios and high enantioselectivities. Parallel mechanistic studies had revealed the metallacyclic structure of the active catalyst, and subsequent experiments with the purposefully formed metallacycle increased the reaction scope dramatically. Aromatic amines, azoles, ammonia, and amides and carbamates as ammonia equivalents all reacted with high selectivities and yields. Moreover, weakly basic enolates (such as silyl enol ethers) and enolate equivalents (such as enamines) also reacted, and other research groups have used this catalyst to conduct reactions of stabilized carbon nucleophiles in the absence of additional base. One hallmark of the reactions catalyzed by this iridium system is the invariably high enantioselectivity, which reflects a high stereoselectivity for formation of the allyl intermediate. Enantioselectivity typically exceeds 95%, regioselectivity for formation of branched over linear products is usually near 20:1, and yields generally exceed 75% and are often greater than 90%. Thus, the development of iridium catalysts for enantioselective allylic substitution shows how studies of reaction mechanism can lead to a particularly active and a remarkably general system for an enantioselective process. In this case, a readily accessible catalyst effects allylic substitution, with high enantioselectivity and regioselectivity complementary to that of the venerable palladium systems.


Journal of the American Chemical Society | 2009

Regio- and Enantioselective N-Allylations of Imidazole, Benzimidazole, and Purine Heterocycles Catalyzed by Single-Component Metallacyclic Iridium Complexes

Levi M. Stanley; John F. Hartwig

Highly regio- and enantioselective iridium-catalyzed N-allylations of benzimidazoles, imidazoles, and purines have been developed. N-Allylated benzimidazoles and imidazoles were isolated in high yields (up to 97%) with high branched-to-linear selectivity (up to 99:1) and enantioselectivity (up to 98% ee) from the reactions of benzimidazole and imidazole nucleophiles with unsymmetrical allylic carbonates in the presence of single component, ethylene-bound, metallacyclic iridium catalysts. N-Allylated purines were also obtained in high yields (up to 91%) with high N9/N7 selectivity (up to 96:4), high branched-to-linear selectivity (98:2), and high enantioselectivity (up to 98% ee) under similar conditions. The reactions encompass a range of benzimidazole, imidazole, and purine nucleophiles, as well as a variety of unsymmetrical aryl, heteroaryl, and aliphatic allylic carbonates. Competition experiments between common amine nucleophiles and the heterocyclic nitrogen nucleophiles studied in this work illustrate the effect of nucleophile pK(a) on the rate of iridium-catalyzed N-allylation reactions. Kinetic studies on the allylation of benzimidazole catalyzed by metallacyclic iridium-phosphoramidite complexes, in combination with studies on the deactivation of these catalysts in the presence of heterocyclic nucleophiles, provide insight into the effects of the structures of the phosphoramidite ligands on the stability of the metallacyclic catalysts. The data obtained from these studies have led to the development of N-allylations of benzimidazoles and imidazoles in the absence of an exogenous base.


Organic Letters | 2008

Copper(II)-catalyzed exo and enantioselective cycloadditions of azomethine imines.

Mukund P. Sibi; Digamber Rane; Levi M. Stanley; Takahiro Soeta

A strategy for exo and enantioselective 1,3-dipolar cycloaddition of azomethine imines to 2-acryloyl-3-pyrazolidinone is described. The corresponding cycloadducts are isolated with high diastereoselectivities (up to >96:4 exo/endo) and enantioselectivities (up to 98% ee).


Angewandte Chemie | 2009

Iridium‐Catalyzed Regio‐ and Enantioselective N‐Allylation of Indoles

Levi M. Stanley; John F. Hartwig

Chiral indole architectures are present in a wide variety of natural products and have been identified as promising lead compounds in medicinal chemistry.[1] Therefore, extensive effort has been dedicated to synthesizing enantioenriched indole derivatives by catalytic, enantioselective reactions,[2] such as 1,2-additions to carbonyl compounds and imines,[3] additions to electron-deficient alkenes,[4] and allylation reactions.[5] However, the indole acts as a carbon nucleophile in each of these reactions; catalytic, enantioselective reactions at the nitrogen atom of an indole are rare, but would provide access to an array of enantioenriched, heterocyclic architectures.


Journal of the American Chemical Society | 2009

Enantioselective, iridium-catalyzed monoallylation of ammonia.

Mark J. Pouy; Levi M. Stanley; John F. Hartwig

Highly enantioselective, iridium-catalyzed monoallylations of ammonia are reported. These reactions occur with electron-neutral, -rich, and -poor cinnamyl carbonates, alkyl and trityloxy-substituted allylic carbonates, and dienyl carbonates in moderate to good yields and excellent enantioselectivities. This process is enabled by the use of an iridium catalyst that does not require a Lewis acid for activation and that is stable toward a large excess of ammonia. This selective formation of primary allylic amines allows for one-pot syntheses of heterodiallylamines and allylic amides that are not otherwise accessible via iridium-catalyzed allylic amination without the use of blocking groups and protective group manipulations.


Journal of the American Chemical Society | 2011

Enantioselective Total Syntheses of (−)-Taiwaniaquinone H and (−)-Taiwaniaquinol B by Iridium-Catalyzed Borylation and Palladium-Catalyzed Asymmetric α-Arylation

Xuebin Liao; Levi M. Stanley; John F. Hartwig

We report a concise, enantioselective total synthesis of (-)-taiwaniaquinone H and the first enantioselective total synthesis of (-)-taiwaniaquinol B by a route that includes asymmetric palladium-catalyzed α-arylation of a ketone with an aryl bromide that was generated by sterically controlled halogenation via iridium-catalyzed C-H borylation. This asymmetric α-arylation creates the benzylic quaternary stereogenic center present in the taiwaniaquinoids. The synthesis was completed efficiently by developing a Lewis acid-promoted cascade to construct the [6,5,6] tricyclic core of an intermediate common to the synthesis of a number of taiwaniaquinoids. Through the preparation of these compounds, we demonstrate the utility of constructing benzylic quaternary stereogenic centers, even those lacking a carbonyl group in the α-position, by asymmetric α-arylation.


Journal of the American Chemical Society | 2010

Iridium-Catalyzed Kinetic Asymmetric Transformations of Racemic Allylic Benzoates

Levi M. Stanley; Chen Bai; Mitsuhiro Ueda; John F. Hartwig

Versatile methods for iridium-catalyzed, kinetic asymmetric substitution of racemic, branched allylic esters are reported. These reactions occur with a variety of aliphatic, aryl, and heteroaryl allylic benzoates to form the corresponding allylic substitution products in high yields (74-96%) with good to excellent enantioselectivity (84-98% ee) with a scope that encompasses a range of anionic carbon and heteroatom nucleophiles. These kinetic asymmetric processes occur with distinct stereochemical courses for racemic aliphatic and aromatic allylic benzoates, and the high reactivity of branched allylic benzoates enables enantioselective allylic substitutions that are slow or poorly selective with linear allylic electrophiles.


Organic chemistry frontiers | 2016

Enantioselective dearomative [3 + 2] cycloadditions of indoles with azomethine ylides derived from alanine imino esters

Anthony L. Gerten; Levi M. Stanley

Catalytic, enantioselective [3 + 2] cycloadditions of azomethine ylides derived from alanine imino esters with 3-nitroindoles are reported. The dearomative cycloaddition reactions occur in the presence of a catalyst generated in situ from Cu(OTf)2 and (R)-Difluorphos to form exo′-pyrroloindoline cycloadducts and establish four contiguous stereogenic centers, two of which are fully substituted. The exo′-pyrroloindoline products are formed in moderate-to-good yields (39–85%) with high diastereoselectivities (up to 98 : 1 : 1 dr) and enantioselectivities (up to 96% ee).


Organic Letters | 2015

Tandem Alkyne Hydroacylation and Oxo-Michael Addition: Diastereoselective Synthesis of 2,3-Disubstituted Chroman-4-ones and Fluorinated Derivatives

Xiang-Wei Du; Levi M. Stanley

Tandem reactions involving Rh-catalyzed intermolecular hydroacylations of alkynes with salicylaldehydes followed by intramolecular oxo-Michael additions are described for the diastereoselective synthesis of 2,3-disubstituted chroman-4-ones. The tandem hydroacylation/oxo-Michael additions occur to form 2,3-disubstituted chroman-4-ones in high yields from a range of 1,2-disubstituted acetylenes and substituted salicylaldehyes. The resulting 2,3-disubstituted chroman-4-ones are readily fluorinated to form trans-3-fluoro-2,3-disubstituted chroman-4-ones in high yields with excellent diastereoselectivity.


Journal of the American Chemical Society | 2017

Ni-Catalyzed Alkene Carboacylation via Amide C–N Bond Activation

James A. Walker; Kevin L. Vickerman; Jenna N. Humke; Levi M. Stanley

We report Ni-catalyzed formal carboacylation of o-allylbenzamides with arylboronic acid pinacol esters. The reaction is triggered by oxidative addition of an activated amide C-N bond to a Ni(0) catalyst and proceeds via alkene insertion into a Ni(II)-acyl bond. The exo-selective carboacylation reaction generates 2-benzyl-2,3-dihydro-1H-inden-1-ones in moderate to high yields (46-99%) from a variety of arylboronic acid pinacol esters and substituted o-allylbenzamides. These results show that amides are practical substrates for alkene carboacylation via amide C-N bond activation, and this approach bypasses challenges associated with alkene carboacylation triggered by C-C bond activation.

Collaboration


Dive into the Levi M. Stanley's collaboration.

Top Co-Authors

Avatar

Mukund P. Sibi

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xinle Li

Iowa State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge