Lewis A. Baker
University of Warwick
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lewis A. Baker.
Journal of Physical Chemistry Letters | 2015
Lewis A. Baker; Michael D. Horbury; Simon E. Greenough; Philip M. Coulter; Tolga N. V. Karsili; Gareth M. Roberts; Andrew J. Orr-Ewing; Michael N. R. Ashfold; Vasilios G. Stavros
Oxybenzone is a common constituent of many commercially available sunscreens providing photoprotection from ultraviolet light incident on the skin. Femtosecond transient electronic and vibrational absorption spectroscopies have been used to investigate the nonradiative relaxation pathways of oxybenzone in cyclohexane and methanol after excitation in the UVA region. The present data suggest that the photoprotective properties of oxybenzone can be understood in terms of an initial ultrafast excited state enol → keto tautomerization, followed by efficient internal conversion and subsequent vibrational relaxation to the ground state (enol) tautomer.
Journal of Physical Chemistry Letters | 2016
Lewis A. Baker; Michael D. Horbury; Simon E. Greenough; Florent Allais; Patrick Walsh; Scott Habershon; Vasilios G. Stavros
We explore the ultrafast photoprotective properties of a series of sinapic acid derivatives in a range of solvents, utilizing femtosecond transient electronic absorption spectroscopy. We find that a primary relaxation mechanism displayed by the plant sunscreen sinapoyl malate and other related molecular species may be understood as a multistep process involving internal conversion of the initially photoexcited 1(1)ππ* state along a trans-cis photoisomerization coordinate, leading to the repopulation of the original trans ground-state isomer or the formation of a stable cis isomer.
Science Progress | 2016
Lewis A. Baker; Vasilios G. Stavros
In this review, we discuss the importance of biological and artificial photoprotection against overexposure to harmful ultraviolet radiation. Transient electronic and transient vibrational absorption spectroscopies are highlighted as important tools in understanding the energy transfer in small molecules, with a focus on the application to commercial sunscreens with representative examples given. Oxybenzone, a common ingredient in commercial sunscreens and sinapoyl malate, a biological sunscreen in plant leaves are presented as case studies.
Optics Express | 2016
Lewis A. Baker; Michael D. Horbury; Vasilios G. Stavros
Today octocrylene is one of the most common molecules included in commercially available sunscreens. It provides broadband photoprotection for the skin from incident UV-A and UV-B radiation of the solar spectrum. In order to understand how octocrylene fulfils its role as a sunscreening agent, femtosecond pump-probe transient electronic UV-visible absorption spectroscopy is utilised to investigate the ultrafastnonradiative relaxation mechanism of octocrylene in cyclohexane or methanol after UV-B photoexcitation. The data presented clearly shows that UV-B photoexcited octocrylene exhibits ultrafast-nonradiative relaxation mechanisms to repopulate its initial ground state within a few picoseconds, which, at the very least, photophysically justifies its wide spread inclusion in commercial sunscreens.
Journal of Chemical Physics | 2015
Lewis A. Baker; Scott Habershon
Pigment-protein complexes (PPCs) play a central role in facilitating excitation energy transfer (EET) from light-harvesting antenna complexes to reaction centres in photosynthetic systems; understanding molecular organisation in these biological networks is key to developing better artificial light-harvesting systems. In this article, we combine quantum-mechanical simulations and a network-based picture of transport to investigate how chromophore organization and protein environment in PPCs impacts on EET efficiency and robustness. In a prototypical PPC model, the Fenna-Matthews-Olson (FMO) complex, we consider the impact on EET efficiency of both disrupting the chromophore network and changing the influence of (local and global) environmental dephasing. Surprisingly, we find a large degree of resilience to changes in both chromophore network and protein environmental dephasing, the extent of which is greater than previously observed; for example, FMO maintains EET when 50% of the constituent chromophores are removed, or when environmental dephasing fluctuations vary over two orders-of-magnitude relative to the in vivo system. We also highlight the fact that the influence of local dephasing can be strongly dependent on the characteristics of the EET network and the initial excitation; for example, initial excitations resulting in rapid coherent decay are generally insensitive to the environment, whereas the incoherent population decay observed following excitation at weakly coupled chromophores demonstrates a more pronounced dependence on dephasing rate as a result of the greater possibility of local exciton trapping. Finally, we show that the FMO electronic Hamiltonian is not particularly optimised for EET; instead, it is just one of many possible chromophore organisations which demonstrate a good level of EET transport efficiency following excitation at different chromophores. Overall, these robustness and efficiency characteristics are attributed to the highly connected nature of the chromophore network and the presence of multiple EET pathways, features which might easily be built into artificial photosynthetic systems.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science | 2017
Lewis A. Baker; Scott Habershon
Photosynthetic pigment-protein complexes (PPCs) are a vital component of the light-harvesting machinery of all plants and photosynthesizing bacteria, enabling efficient transport of the energy of absorbed light towards the reaction centre, where chemical energy storage is initiated. PPCs comprise a set of chromophore molecules, typically bacteriochlorophyll species, held in a well-defined arrangement by a protein scaffold; this relatively rigid distribution leads to a viewpoint in which the chromophore subsystem is treated as a network, where chromophores represent vertices and inter-chromophore electronic couplings represent edges. This graph-based view can then be used as a framework within which to interrogate the role of structural and electronic organization in PPCs. Here, we use this network-based viewpoint to compare excitation energy transfer (EET) dynamics in the light-harvesting complex II (LHC-II) system commonly found in higher plants and the Fenna-Matthews-Olson (FMO) complex found in green sulfur bacteria. The results of our simple network-based investigations clearly demonstrate the role of network connectivity and multiple EET pathways on the efficient and robust EET dynamics in these PPCs, and highlight a role for such considerations in the development of new artificial light-harvesting systems.
Journal of Physical Chemistry Letters | 2017
Lewis A. Baker; Sarah L. Clark; Scott Habershon; Vasilios G. Stavros
The ultrafast photoprotection mechanisms in operation in ethylhexyl triazone (EHT, octyl triazone), an approved ultraviolet-B (UV-B) chemical filter for commercial sunscreens, remain elusive, with a notable absence of ultrafast time-resolved measurements. These large organic molecules are of increasing interest as they are suspected to be less likely to penetrate the skin than some of the smaller approved filters, thereby reducing the possible adverse effects from sunscreen products. We apply femtosecond transient absorption spectroscopy with electronic structure calculations to unravel the complete photodeactivation mechanism that EHT undergoes after UV-B irradiation. We propose that this involves ultrafast internal conversion of the initially photoexcited n1ππ* state that couples to the ground state via a 11ππ*/S0 conical intersection, enabling multiple absorption and recovery cycles, as one would anticipate from a highly efficient filter. We also observe long-lived photoproducts which, based on previous studies along with present electronic structure calculations, we attribute to trapped excited populations in the S1 and T1 states.
Journal of Physical Chemistry Letters | 2016
Lewis A. Baker; Simon E. Greenough; Vasilios G. Stavros
Chemical Society Reviews | 2017
Lewis A. Baker; Barbara Marchetti; Tolga N. V. Karsili; Vasilios G. Stavros; Michael N. R. Ashfold
Photochemical and Photobiological Sciences | 2015
Lewis A. Baker; Michael D. Horbury; Simon E. Greenough; Michael N. R. Ashfold; Vasilios G. Stavros