Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lewis E. Johnson is active.

Publication


Featured researches published by Lewis E. Johnson.


Accounts of Chemical Research | 2014

Optimizing calculations of electronic excitations and relative hyperpolarizabilities of electrooptic chromophores.

Lewis E. Johnson; Larry R. Dalton; Bruce H. Robinson

CONSPECTUS: Organic glasses containing chromophores with large first hyperpolarizabilities (β) are promising for compact, high-bandwidth, and energy-efficient electro-optic devices. Systematic optimization of device performance requires development of materials with high acentric order and enhanced hyperpolarizability at operating wavelengths. One essential component of the design process is the accurate calculation of optical transition frequencies and hyperpolarizability. These properties can be computed with a wide range of electronic structure methods implemented within commercial and open-source software packages. A wide variety of methods, especially hybrid density-functional theory (DFT) variants have been used for this purpose. However, in order to provide predictions useful to chromophore designers, a method must be able to consistently predict the relative ordering of standard and novel materials. Moreover, it is important to distinguish between the resonant and nonresonant contribution to the hyperpolarizabiliy and be able to estimate the trade-off between improved β and unwanted absorbance (optical loss) at the target devices operating wavelength. Therefore, we have surveyed a large variety of common methods for computing the properties of modern high-performance chromophores and compared these results with prior experimental hyper-Rayleigh scattering (HRS) and absorbance data. We focused on hybrid DFT methods, supplemented by more computationally intensive Møller-Plesset (MP2) calculations, to determine the relative accuracy of these methods. Our work compares computed hyperpolarizabilities in chloroform relative to standard chromophore EZ-FTC against HRS data versus the same reference. We categorized DFT methods used by the amount of Hartree-Fock (HF) exchange energy incorporated into each functional. Our results suggest that the relationship between percentage of long-range HF exchange and both βHRS and λmax is nearly linear, decreasing as the fraction of long-range HF exchange increases. Mild hybrid DFT methods are satisfactory for prediction of λmax. However, mild hybrid methods provided qualitatively incorrect predictions of the relative hyperpolarizabilities of three high-performance chromophores. DFT methods with approximately 50% HF exchange, and especially the Truhlar M062X functional, provide superior predictions of relative βHRS values but poorer predictions of λmax. The observed trends for these functionals, as well as range-separated hybrids, are similar to MP2, though predicting smaller absolute magnitudes for βHRS. Frequency dependence for βHRS can be calculated using time-dependent DFT and HF methods. However, calculation quality is sensitive not only to a methods ability to predict static hyperpolarizability but also to its prediction of optical resonances. Due to the apparent trade-off in accuracy of prediction of these two properties and the need to use static finite-field methods for MP2 and higher-level hyperpolarizability calculations in most codes, we suggest that composite methods could greatly improve the accuracy of calculations of β and λmax.


Journal of Materials Chemistry | 2011

Facile structure and property tuning through alteration of ring structures in conformationally locked phenyltetraene nonlinear optical chromophores

Xing-Hua Zhou; Joshua A. Davies; Su Huang; Jingdong Luo; Zhengwei Shi; Brent M. Polishak; Yen-Ju Cheng; Tae-Dong Kim; Lewis E. Johnson; Alex K.-Y. Jen

A series of phenyltetraene-based nonlinear optical (NLO) chromophores 1a–c with the same donor and acceptor groups, but different tetraene bridges that are partly connected by various sizes of aliphatic rings, have been synthesized and systematically investigated. The interposed conjugated tetraene segments in three chromophores studied are based on isophorone, (1S)-(−)-verbenone, and 3,4,4-trimethyl-2-cyclopentenone, respectively. This kind of structural alteration has significant effect on the intrinsic electronic structures and physical properties of these highly polarizable chromophores as revealed by a variety of characterization techniques. The introduction of the verbenone- and trimethylcyclopentenone-based tetraene bridges could significantly improve the glass-forming ability of chromophores 1b and 1c in comparison with the highly crystalline characteristics of isophorone-based chromophores 1a. More importantly, chromophores 1a–c exhibited distinct optical features in absorption band shape, solvatochromic behavior, as well as energy band gap from the UV-vis-NIR absorption measurements. Quantum mechanical calculations using density functional theory (DFT) were also used to evaluate second-order NLO properties of these chromophores. The electro-optic (EO) coefficients of 1a–c in poled polymers with the 10 wt% chromophore content showed an apparent decrease from 78 pm V−1 for 1a to 42 pm V−1 for 1c. This decrease is attributed to the gradual decrease of the molecular hyperpolarizability (β) of the chromophores which is associated with the progressive cyanine-like electronic structure from the isophorone-based 1a to the cyclopentenone-based 1cchromophore.


Journal of Physical Chemistry B | 2010

Reduced dimensionality in organic electro-optic materials: theory and defined order.

Stephanie J. Benight; Lewis E. Johnson; Robin Barnes; Benjamin C. Olbricht; Denise H. Bale; Philip J. Reid; B. E. Eichinger; Larry R. Dalton; Philip A. Sullivan; Bruce H. Robinson

Identification of electronic intermolecular electrostatic interactions that can significantly enhance poling-induced order is important to the advancement of the field of organic electro-optics. Here, we demonstrate an example of such improvement achieved through exploitation of the interaction of coumarin pendant groups in chromophore-containing macromolecules. Acentric order enhancement is explained in terms of lattice-symmetry effects, where constraint of orientational degrees of freedom alters the relationship between centrosymmetric and acentric order. We demonstrate both experimentally and theoretically that lattice dimensionality can be defined using the relationship between centrosymmetric order and acentric order. Experimentally: Acentric order is determined by attenuated total reflection measurement of electro-optic activity coupled with hyper-Rayleigh scattering measurement of molecular first hyperpolarizability, and centrosymmetric order is determined by the variable angle polarization referenced absorption spectroscopy method. Theoretically: Order is determined from statistical mechanical models that predict the properties of soft condensed matter.


Advanced Materials | 2012

Nano‐Engineering Lattice Dimensionality for a Soft Matter Organic Functional Material

Stephanie J. Benight; Daniel B. Knorr; Lewis E. Johnson; Philip A. Sullivan; David Lao; Jianing Sun; Lakshmi S. Kocherlakota; Arumugasamy Elangovan; Bruce H. Robinson; René M. Overney; Larry R. Dalton

A high performing electro-optic (EO) chromophore with covalently attached coumarin-based pendant groups exhibits intermolecular correlation of coumarin units through molecular dynamics (MD) simulations. Unique, orthogonal molecular orientations of the chromophore and coumarin units are also evident when investigated optically. Such molecular orientation translates to reduced lattice dimensionality of the bulk C1 soft matter material system, leading to increased acentric order and EO activity. Results are corroborated by nanorheological experimental methods.


Journal of Physical Chemistry B | 2010

Dielectric Constants of Simple Liquids: Stockmayer and Ellipsoidal Fluids

Lewis E. Johnson; Robin Barnes; Thomas W. Draxler; B. E. Eichinger; Bruce H. Robinson

Coarse-grained models of molecular interactions are of interest because they convey the essence of molecular interactions in simple and easy to understand form. However, coarse-grained models fail to adequately predict some material properties, such as the failure of the Stockmayer model to reproduce the dielectric behavior of highly polar liquids. We examine the behavior of the Stockmayer fluid over a range of dipole densities that covers known organic solvents, as well as that of an ellipsoidal Stockmayer-like fluid, using NVT rigid-body Monte Carlo simulations. Both fluids are examined under different electrostatic boundary conditions and ensemble sizes. While the Stockmayer model predicts that liquids of similar dipole density to acetonitrile would be ferroelectric and have a dielectric constant far higher than shown by experiment, the ellipsoidal model provides a better accounting of dielectric behavior. This result bodes well for the use of coarse-grained solvent models for large-scale simulations.


Journal of Physical Chemistry B | 2011

Measuring Order in Contact-Poled Organic Electrooptic Materials with Variable-Angle Polarization-Referenced Absorption Spectroscopy (VAPRAS)

Benjamin C. Olbricht; Philip A. Sullivan; Peter C. Dennis; Jeffrey T. Hurst; Lewis E. Johnson; Stephanie J. Benight; Joshua A. Davies; Antao Chen; B. E. Eichinger; Philip J. Reid; Larry R. Dalton; Bruce H. Robinson

Organic nonlinear electrooptical (ONLO) chromophores must be acentrically ordered for the ONLO material to have electrooptic (EO) activity. The magnitude of the order is characterized by the acentric order parameter, , where β is the major Euler angle between the main axis of the chromophore and the poling field which imposes the acentric order. The acentric order parameter, which is difficult to measure directly, is related to the centrosymmetric order parameter, defined as = ½(3-1), through the underlying statistical distribution. We have developed a method to determine centrosymmetric order of the ONLO chromophores when the order is low (i.e., < 0.1). We have extended the method (begun by Graf et al. J. Appl. Phys. 1994, 75, 3335.) based on the absorption of light to determine the centrosymmetric order parameter induced by a poling field on a thin film sample of ONLO material. We find that the order parameters, analyzed by two different methods, are similar and also consistent with theoretical estimates from modeling of the system using coarse-grained Monte Carlo statistical mechanical methods.


ACS Applied Materials & Interfaces | 2014

Monitoring N3 Dye Adsorption and Desorption on TiO2 Surfaces: A Combined QCM-D and XPS Study

Hannah K. Wayment-Steele; Lewis E. Johnson; Fangyuan Tian; Matthew C. Dixon; Lauren Benz; Malkiat S. Johal

Understanding the kinetics of dye adsorption and desorption on semiconductors is crucial for optimizing the performance of dye-sensitized solar cells (DSSCs). Quartz crystal microbalance with dissipation monitoring (QCM-D) measures adsorbed mass in real time, allowing determination of binding kinetics. In this work, we characterize adsorption of the common RuBipy dye N3 to the native oxide layer of a planar, sputter-coated titanium surface, simulating the TiO2 substrate of a DSSC. We report adsorption equilibrium constants consistent with prior optical measurements of N3 adsorption. Dye binding and surface integrity were also verified by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy (XPS). We further study desorption of the dye from the native oxide layer on the QCM sensors using tetrabutylammonium hydroxide (TBAOH), a commonly used industrial desorbant. We find that using TBAOH as a desorbant does not fully regenerate the surface, though little ruthenium or nitrogen is observed by XPS after desorption, suggesting that carboxyl moieties of N3 remain bound. We demonstrate the native oxide layer of a titanium sensor as a valid and readily available planar TiO2 morphology to study dye adsorption and desorption and begin to investigate the mechanism of dye desorption in DSSCs, a system that requires further study.


Journal of Chemical Theory and Computation | 2016

Systematic Generation of Anisotropic Coarse-Grained Lennard-Jones Potentials and Their Application to Ordered Soft Matter

Andreas F. Tillack; Lewis E. Johnson; B. E. Eichinger; Bruce H. Robinson

We have developed an approach to coarse-grained (CG) modeling of the van der Waals (vdW) type of interactions among molecules by representing groups of atoms within those molecules in terms of ellipsoids (rather than spheres). Our approach systematically translates an arbitrary underlying all-atom (AA) representation of a molecular system to a multisite ellipsoidal potential within the family of Gay-Berne type potentials. As the method enables arbitrary levels of coarse-graining, or even multiple levels of coarse-graining within a single simulation, we describe the method as a Level of Detail (LoD) model. The LoD model, as integrated into our groups Metropolis Monte Carlo computational package, is also capable of reducing the complexity of the molecular electrostatics by means of a multipole expansion of charges obtained from an AA force field (or directly from electronic structure calculations) of the charges within each ellipsoid. Electronic polarizability may additionally be included. The present CG representation does not include transformation of bonded interactions; ellipsoids are connected at the fully atomistic bond sites by freely rotating links that are constrained to maintain a constant distance. The accuracy of the method is demonstrated for three distinct types of self-assembling or self-organizing molecular systems: (1) the interaction between benzene and perfluorobenzene (dispersion interactions), (2) linear hydrocarbon chains (a system with large conformational flexibility), and (3) the self-organization of ethylene carbonate (a highly polar liquid). Lastly, the method is applied to the interaction of large (∼100 atom) molecules, which are typical of organic nonlinear optical chromophores, to demonstrate the effect of different CG models on molecular assembly.


Process Safety Progress | 2008

CRW 2.0: A representative-compound approach to functionality-based prediction of reactive chemical hazards †

Lewis E. Johnson; James K. Farr

The NOAA Chemical Reactivity Worksheet (CRW) has provided a user‐friendly, yet powerful method of qualitatively predicting reactive chemical hazards since its introduction in 1998, and has seen its use in spill response, storage management, and process safety for intentional chemistry. The CRW predicts reaction hazards based on a database of more than 6,000 common industrial chemicals, classified by major reactive groups, using 43 × 43 matrix of organic and inorganic reactive groups, modified from the earlier “EPA method for determining the compatibility of hazardous mixtures.” CRW output describes the hazards qualitatively; e.g., “spontaneous ignition of reactants or products due to reaction heat,” or “combination liberates nonflammable, nontoxic gas and may cause pressurization.” The CRW also provides summaries of properties and special hazards for many of the compounds in the database.


Proceedings of SPIE | 2014

Latest advances in biomaterials: from deoxyribonucleic acid to nucleobases

Fahima Ouchen; Eliot F. Gomez; Donna M. Joyce; Adrienne Williams; Steve S. Kim; Emily M. Heckman; Lewis E. Johnson; Perry P. Yaney; Narayanan Venkat; A. J. Steckl; Francois Kajzar; Ileana Rau; Agnieszka Pawlicka; Paras N. Prasad; James G. Grote

This paper is a review of the recent research in bio-based materials for photonics and electronics applications. Materials that we have been working with include: deoxyribonucleic acid (DNA)-based biopolymers and nucleobases. We will highlight work on increasing the ionic conductivity of DNA-based membranes, enhancing the direct (DC) current and photoconductivity of DNA-based biopolymers, crosslinking of DNA-based biopolymers and promising applications for DNA nucleobases. Key

Collaboration


Dive into the Lewis E. Johnson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge