Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lewys Jones is active.

Publication


Featured researches published by Lewys Jones.


Advanced Structural and Chemical Imaging | 2015

Smart Align—a new tool for robust non-rigid registration of scanning microscope data

Lewys Jones; Hao Yang; Timothy J. Pennycook; Matthew J. Marshall; Sandra Van Aert; Nigel D. Browning; Martin R. Castell; Peter D. Nellist

Many microscopic investigations of materials may benefit from the recording of multiple successive images. This can include techniques common to several types of microscopy such as frame averaging to improve signal-to-noise ratios (SNR) or time series to study dynamic processes or more specific applications. In the scanning transmission electron microscope, this might include focal series for optical sectioning or aberration measurement, beam damage studies or camera-length series to study the effects of strain; whilst in the scanning tunnelling microscope, this might include bias-voltage series to probe local electronic structure. Whatever the application, such investigations must begin with the careful alignment of these data stacks, an operation that is not always trivial. In addition, the presence of low-frequency scanning distortions can introduce intra-image shifts to the data. Here, we describe an improved automated method of performing non-rigid registration customised for the challenges unique to scanned microscope data specifically addressing the issues of low-SNR data, images containing a large proportion of crystalline material and/or local features of interest such as dislocations or edges. Careful attention has been paid to artefact testing of the non-rigid registration method used, and the importance of this registration for the quantitative interpretation of feature intensities and positions is evaluated.


Ultramicroscopy | 2015

Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: Experimental demonstration at atomic resolution

Timothy J. Pennycook; Andrew R. Lupini; Hao Yang; Matthew F. Murfitt; Lewys Jones; Peter D. Nellist

We demonstrate a method to achieve high efficiency phase contrast imaging in aberration corrected scanning transmission electron microscopy (STEM) with a pixelated detector. The pixelated detector is used to record the Ronchigram as a function of probe position which is then analyzed with ptychography. Ptychography has previously been used to provide super-resolution beyond the diffraction limit of the optics, alongside numerically correcting for spherical aberration. Here we rely on a hardware aberration corrector to eliminate aberrations, but use the pixelated detector data set to utilize the largest possible volume of Fourier space to create high efficiency phase contrast images. The use of ptychography to diagnose the effects of chromatic aberration is also demonstrated. Finally, the four dimensional dataset is used to compare different bright field detector configurations from the same scan for a sample of bilayer graphene. Our method of high efficiency ptychography produces the clearest images, while annular bright field produces almost no contrast for an in-focus aberration-corrected probe.


Microscopy and Microanalysis | 2013

Identifying and Correcting Scan Noise and Drift in the Scanning Transmission Electron Microscope

Lewys Jones; Peter D. Nellist

The aberration-corrected scanning transmission electron microscope has great sensitivity to environmental or instrumental disturbances such as acoustic, mechanical, or electromagnetic interference. This interference can introduce distortions to the images recorded and degrade both signal noise and resolution performance. In addition, sample or stage drift can cause the images to appear warped and leads to unreliable lattice parameters being exhibited. Here a detailed study of the sources, natures, and effects of imaging distortions is presented, and from this analysis a piece of image reconstruction code has been developed that can restore the majority of the effects of these detrimental image distortions for atomic-resolution data. Example data are presented, and the performance of the restored images is compared quantitatively against the as-recorded data. An improvement in apparent resolution of 16% and an improvement in signal-to-noise ratio of 30% were achieved, as well as correction of the drift up to the precision to which it can be measured.


Nano Letters | 2014

Rapid estimation of catalyst nanoparticle morphology and atomic-coordination by high-resolution Z-contrast electron microscopy.

Lewys Jones; Katherine E. MacArthur; Vidar Tonaas Fauske; Antonius T. J. van Helvoort; Peter D. Nellist

Heterogeneous nanoparticle catalyst development relies on an understanding of their structure-property relationships, ideally at atomic resolution and in three-dimensions. Current transmission electron microscopy techniques such as discrete tomography can provide this but require multiple images of each nanoparticle and are incompatible with samples that change under electron irradiation or with surveying large numbers of particles to gain significant statistics. Here, we make use of recent advances in quantitative dark-field scanning transmission electron microscopy to count the number atoms in each atomic column of a single image from a platinum nanoparticle. These atom-counts, along with the prior knowledge of the face-centered cubic geometry, are used to create atomistic models. An energy minimization is then used to relax the nanoparticles 3D structure. This rapid approach enables high-throughput statistical studies or the analysis of dynamic processes such as facet-restructuring or particle damage.


Nature Communications | 2015

Polarization screening-induced magnetic phase gradients at complex oxide interfaces

Steven R. Spurgeon; Prasanna V. Balachandran; Despoina M. Kepaptsoglou; Anoop R. Damodaran; J. Karthik; Siamak Nejati; Lewys Jones; Haile Ambaye; Valeria Lauter; Quentin M. Ramasse; Kenneth K. S. Lau; Lane W. Martin; James M. Rondinelli; Mitra L. Taheri

Thin-film oxide heterostructures show great potential for use in spintronic memories, where electronic charge and spin are coupled to transport information. Here we use a La0.7Sr0.3MnO3 (LSMO)/PbZr0.2Ti0.8O3 (PZT) model system to explore how local variations in electronic and magnetic phases mediate this coupling. We present direct, local measurements of valence, ferroelectric polarization and magnetization, from which we map the phases at the LSMO/PZT interface. We combine these experimental results with electronic structure calculations to elucidate the microscopic interactions governing the interfacial response of this system. We observe a magnetic asymmetry at the LSMO/PZT interface that depends on the local PZT polarization and gives rise to gradients in local magnetic moments; this is associated with a metal-insulator transition at the interface, which results in significantly different charge-transfer screening lengths. This study establishes a framework to understand the fundamental asymmetries of magnetoelectric coupling in oxide heterostructures.


Ultramicroscopy | 2015

Dose limited reliability of quantitative annular dark field scanning transmission electron microscopy for nano-particle atom-counting

A. De Backer; Gerardo T. Martinez; Katherine E. MacArthur; Lewys Jones; Armand Béché; Peter D. Nellist; S. Van Aert

Quantitative annular dark field scanning transmission electron microscopy (ADF STEM) has become a powerful technique to characterise nano-particles on an atomic scale. Because of their limited size and beam sensitivity, the atomic structure of such particles may become extremely challenging to determine. Therefore keeping the incoming electron dose to a minimum is important. However, this may reduce the reliability of quantitative ADF STEM which will here be demonstrated for nano-particle atom-counting. Based on experimental ADF STEM images of a real industrial catalyst, we discuss the limits for counting the number of atoms in a projected atomic column with single atom sensitivity. We diagnose these limits by combining a thorough statistical method and detailed image simulations.


Scientific Reports | 2015

Atomic scale dynamics of a solid state chemical reaction directly determined by annular dark-field electron microscopy

Timothy J. Pennycook; Lewys Jones; Henrik Pettersson; João Coelho; Megan Canavan; Beatriz Mendoza-Sanchez; Valeria Nicolosi; Peter D. Nellist

Dynamic processes, such as solid-state chemical reactions and phase changes, are ubiquitous in materials science, and developing a capability to observe the mechanisms of such processes on the atomic scale can offer new insights across a wide range of materials systems. Aberration correction in scanning transmission electron microscopy (STEM) has enabled atomic resolution imaging at significantly reduced beam energies and electron doses. It has also made possible the quantitative determination of the composition and occupancy of atomic columns using the atomic number (Z)-contrast annular dark-field (ADF) imaging available in STEM. Here we combine these benefits to record the motions and quantitative changes in the occupancy of individual atomic columns during a solid-state chemical reaction in manganese oxides. These oxides are of great interest for energy-storage applications such as for electrode materials in pseudocapacitors. We employ rapid scanning in STEM to both drive and directly observe the atomic scale dynamics behind the transformation of Mn3O4 into MnO. The results demonstrate we now have the experimental capability to understand the complex atomic mechanisms involved in phase changes and solid state chemical reactions.


IOP Conference Series: Materials Science and Engineering | 2016

Quantitative ADF STEM: acquisition, analysis and interpretation

Lewys Jones

Quantitative annular dark-field in the scanning transmission electron microscope (ADF STEM), where image intensities are used to provide composition and thickness measurements, has enjoyed a renaissance during the last decade. Now in a post aberration-correction era many aspects of the technique are being revisited. Here the recent progress and emerging best-practice for such aberration corrected quantitative ADF STEM is discussed including issues relating to proper acquisition of experimental data and its calibration, approaches for data analysis, the utility of such data, its interpretation and limitations.


Journal of Physics: Conference Series | 2015

4D STEM: High efficiency phase contrast imaging using a fast pixelated detector

Hao Yang; Lewys Jones; H. Ryll; Martin Simson; Heike Soltau; Yukihito Kondo; Ryusuke Sagawa; Hiroyuki Banba; Ian MacLaren; Peter D. Nellist

Phase contrast imaging is widely used for imaging beam sensitive and weak phase objects in electron microscopy. In this work we demonstrate the achievement of high efficient phase contrast imaging in STEM using the pnCCD, a fast direct electron pixelated detector, which records the diffraction patterns at every probe position with a speed of 1000 to 4000 frames per second, forming a 4D STEM dataset simultaneously with the incoherent Z-contrast imaging. Ptychographic phase reconstruction has been applied and the obtained complex transmission function reveals the phase of the specimen. The results using GaN and Ti, Nd- doped BiFeO3 show that this imaging mode is especially powerful for imaging light elements in the presence of much heavier elements.


Ultramicroscopy | 2017

Electron ptychographic phase imaging of light elements in crystalline materials using Wigner distribution deconvolution

Hao Yang; Ian MacLaren; Lewys Jones; Gerardo T. Martinez; Martin Simson; Martin Huth; H. Ryll; Heike Soltau; Ryusuke Sagawa; Yukihito Kondo; Colin Ophus; Peter Ercius; Lei Jin; András Kovács; Peter D. Nellist

Recent development in fast pixelated detector technology has allowed a two dimensional diffraction pattern to be recorded at every probe position of a two dimensional raster scan in a scanning transmission electron microscope (STEM), forming an information-rich four dimensional (4D) dataset. Electron ptychography has been shown to enable efficient coherent phase imaging of weakly scattering objects from a 4D dataset recorded using a focused electron probe, which is optimised for simultaneous incoherent Z-contrast imaging and spectroscopy in STEM. Therefore coherent phase contrast and incoherent Z-contrast imaging modes can be efficiently combined to provide a good sensitivity of both light and heavy elements at atomic resolution. In this work, we explore the application of electron ptychography for atomic resolution imaging of strongly scattering crystalline specimens, and present experiments on imaging crystalline specimens including samples containing defects, under dynamical channelling conditions using an aberration corrected microscope. A ptychographic reconstruction method called Wigner distribution deconvolution (WDD) was implemented. Experimental results and simulation results suggest that ptychography provides a readily interpretable phase image and great sensitivity for imaging light elements at atomic resolution in relatively thin crystalline materials.

Collaboration


Dive into the Lewys Jones's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hao Yang

University of Oxford

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge