Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lex Bouwman is active.

Publication


Featured researches published by Lex Bouwman.


Science | 2014

A mid-term analysis of progress toward international biodiversity targets

Derek P. Tittensor; Matt Walpole; Samantha L. L. Hill; Daniel G. Boyce; Gregory L. Britten; Neil D. Burgess; Stuart H. M. Butchart; Paul W. Leadley; Eugenie C. Regan; Rob Alkemade; Roswitha Baumung; Céline Bellard; Lex Bouwman; Nadine Bowles-Newark; Anna M. Chenery; William W. L. Cheung; Villy Christensen; H. David Cooper; Annabel R. Crowther; Matthew J. R. Dixon; Alessandro Galli; Valérie Gaveau; Richard D. Gregory; Nicolás L. Gutiérrez; Tim Hirsch; Robert Höft; Stephanie R. Januchowski-Hartley; Marion Karmann; Cornelia B. Krug; Fiona Leverington

In 2010, the international community, under the auspices of the Convention on Biological Diversity, agreed on 20 biodiversity-related “Aichi Targets” to be achieved within a decade. We provide a comprehensive mid-term assessment of progress toward these global targets using 55 indicator data sets. We projected indicator trends to 2020 using an adaptive statistical framework that incorporated the specific properties of individual time series. On current trajectories, results suggest that despite accelerating policy and management responses to the biodiversity crisis, the impacts of these efforts are unlikely to be reflected in improved trends in the state of biodiversity by 2020. We highlight areas of societal endeavor requiring additional efforts to achieve the Aichi Targets, and provide a baseline against which to assess future progress. Although conservation efforts are accelerating, their impact is unlikely to improve the global state of biodiversity by 2020. Indicators of progress and decline The targets set by the Convention on Biological Diversity in 2010 focused international efforts to alleviate global biodiversity decline. However, many of the consequences of these efforts will not be evident by the 2020 deadline agreed to by governments of 150 countries. Tittensor et al. analyzed data on 55 different biodiversity indicators to predict progress toward the 2020 targets—indicators such as protected area coverage, land-use trends, and endangered species status. The analysis pinpoints the problems and areas that will need the most attention in the next few years. Science, this issue p. 241


Global Biogeochemical Cycles | 1999

Closing the global N2O budget: A retrospective analysis 1500–1994

Carolien Kroeze; A. R. Mosier; Lex Bouwman

We present new estimates of global nitrous oxide (N2O) emissions for the period 1500–1994 based on revised Intergovernmental Panel on Climate Change guidelines [Intergovernmental Panel on Climate Change (IPCC), 1997; Mosier et al., 1998]. Use of these estimates as input to a simple atmospheric box model resulted in a closed N2O budget over time, showing that increases in atmospheric N2O can be primarily attributed to changes in food production systems. We hypothesize that before the ninetheenth century conversion of natural land to agriculture had no net effect on N2O. During the twentieth century a fast expansion of agricultural land coupled with intensification of land use may have caused a net increase in N2O. In our base scenario the total N2O emissions increased from 11 Tg N yr−1 in 1850 to 15 Tg N yr−1 in 1970 and to 18 Tg N yr−1 in 1994.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period

Lex Bouwman; Kees Klein Goldewijk; Klaas van der Hoek; A. H. W. Beusen; Detlef P. van Vuuren; Jaap Willems; Mariana C. Rufino; Elke Stehfest

Crop-livestock production systems are the largest cause of human alteration of the global nitrogen (N) and phosphorus (P) cycles. Our comprehensive spatially explicit inventory of N and P budgets in livestock and crop production systems shows that in the beginning of the 20th century, nutrient budgets were either balanced or surpluses were small; between 1900 and 1950, global soil N surplus almost doubled to 36 trillion grams (Tg)·y−1 and P surplus increased by a factor of 8 to 2 Tg·y−1. Between 1950 and 2000, the global surplus increased to 138 Tg·y−1 of N and 11 Tg·y−1 of P. Most surplus N is an environmental loss; surplus P is lost by runoff or accumulates as residual soil P. The International Assessment of Agricultural Knowledge, Science, and Technology for Development scenario portrays a world with a further increasing global crop (+82% for 2000–2050) and livestock production (+115%); despite rapidly increasing recovery in crop (+35% N recovery and +6% P recovery) and livestock (+35% N and P recovery) production, global nutrient surpluses continue to increase (+23% N and +54% P), and in this period, surpluses also increase in Africa (+49% N and +236% P) and Latin America (+75% N and +120% P). Alternative management of livestock production systems shows that combinations of intensification, better integration of animal manure in crop production, and matching N and P supply to livestock requirements can effectively reduce nutrient flows. A shift in human diets, with poultry or pork replacing beef, can reduce nutrient flows in countries with intensive ruminant production.


Journal of Geophysical Research | 2010

Impact of future land use and land cover changes on atmospheric chemistry-climate interactions

Laurens Ganzeveld; Lex Bouwman; Elke Stehfest; Detlef P. van Vuuren; B. Eickhout; J. Lelieveld

annual soil NO emissions by ∼1.2 TgN yr −1 (9%), whereas isoprene emissions decrease by ∼50 TgC yr −1 (−12%). The analysis shows increases in simulated boundary layer ozone mixing ratios up to ∼9 ppbv and more than a doubling in hydroxyl radical concentrations over deforested areas in Africa. Small changes in global atmosphere‐biosphere fluxes of NOx and ozone point to compensating effects. Decreases in soil NO emissions in deforested regions are counteracted by a larger canopy release of NOx caused by reduced foliage uptake. Despite this decrease in foliage uptake, the ozone deposition flux does not decrease since surface layer mixing ratios increase because of a reduced oxidation of isoprene by ozone. Our study indicates that the simulated impact of land cover and land use changes on atmospheric chemistry depends on a consistent representation of emissions, deposition, and canopy interactions and their dependence on meteorological, hydrological, and biological drivers to account for these compensating effects. It results in negligible changes in the atmospheric oxidizing capacity and, consequently, in the lifetime of methane. Conversely, we expect a pronounced increase in oxidizing capacity as a consequence of anthropogenic emission increases. Citation: Ganzeveld, L., L. Bouwman, E. Stehfest, D. P. van Vuuren, B. Eickhout, and J. Lelieveld (2010), Impact of future land use and land cover changes on atmospheric chemistry‐climate interactions, J. Geophys. Res., 115, D23301,


Environmental Research Letters | 2014

The Haber Bosch–harmful algal bloom (HB–HAB) link

Patricia M. Glibert; Roxane Maranger; Daniel Sobota; Lex Bouwman

Large-scale commercialization of the Haber–Bosch (HB) process is resulting in intensification of nitrogen (N) fertilizer use worldwide. Globally N fertilizer use is far outpacing that of phosphorus (P) fertilizer. Much of the increase in N fertilizers is also now in the form of urea, a reduced form of N. Incorporation of these fertilizers into agricultural products is inefficient leading to significant environmental pollution and aquatic eutrophication. Of particular concern is the increased occurrence of harmful algal blooms (HABs) in waters receiving nutrient enriched runoff. Many phytoplankton causing HABs have physiological adaptive strategies that make them favored under conditions of elevated N : P conditions and supply of chemically reduced N (ammonium, urea). We propose that the HB-HAB link is a function of (1) the inefficiency of incorporation of N fertilizers in the food supply chain, the leakiness of the N cycle from crop to table, and the fate of lost N relative to P to the environment; and (2) adaptive physiology of many HABs to thrive in environments in which there is excess N relative to classic nutrient stoichiometric proportions and where chemically reduced forms of N dominate. The rate of HAB expansion is particularly pronounced in China where N fertilizer use has escalated very rapidly, where soil retention is declining, and where blooms have had large economic and ecological impacts. There, in addition to increased use of urea and high N : P based fertilizers overall, escalating aquaculture production adds to the availability of reduced forms of N, as does atmospheric deposition of ammonia. HABs in both freshwaters and marginal seas in China are highly related to these overall changing N loads and ratios. Without more aggressive N control the future outlook in terms of HABs is likely to include more events, more often, and they may also be more toxic.


Technological Forecasting and Social Change | 2000

Greenhouse gas emissions in an equity-, environment- and service-oriented world: An IMAGE-based scenario for the 21st century

Bert de Vries; Johannes Bollen; Lex Bouwman; Michel den Elzen; Marco A. Janssen; Eric Kreileman

Abstract This article describes a greenhouse gas (GHG) emissions scenario for a world that chooses collectively and effectively to pursue service-oriented economic prosperity while taking into account equity and environmental concerns, but without policies directed at mitigating climate change. After peaking around 2050 at 2.2 times the 1990 level of primary energy use, a number of factors lead to a primary energy use rate at the end of the next century that is only 40% higher than the 1990 rate. Among these factors are a stabilizing (and after 2050, declining) population, convergence in economic productivity, dematerialization and technology transfer, and high-tech innovations in energy use and supply. Land use-related emissions show a similar trend. Total CO 2 emissions peak at 12.8 CtC/yr around 2040, after which they start falling off. Other GHG emissions show a similar trend. The resulting CO 2 -equivalent concentration continues to rise to about 600 ppmv in 2100. Present understanding of climate change impacts suggest that even in this world of high-tech innovations in resource use in combination with effective global governance and concern about equity and environment issues, climate policy is needed if mankind is to avoid dangerous interference with the climate system.


Environmental Research Letters | 2013

Mariculture: significant and expanding cause of coastal nutrient enrichment

Lex Bouwman; A. H. W. Beusen; Patricia M. Glibert; Ciska C. Overbeek; Marcin Pawlowski; Jorge Herrera; Sandor Mulsow; Rencheng Yu; Mingjiang Zhou

Mariculture (marine aquaculture) generates nutrient waste either through the excretion by the reared organisms, or through direct enrichment by, or remineralization of, externally applied feed inputs. Importantly, the waste from fish or shellfish cannot easily be managed, as most is in dissolved form and released directly to the aquatic environment. The release of dissolved and particulate nutrients by intensive mariculture results in increasing nutrient loads (finfish and crustaceans), and changes in nutrient stoichiometry (all mariculture types). Based on different scenarios, we project that nutrients from mariculture will increase up to six fold by 2050 with exceedance of the nutrient assimilative capacity in parts of the world where mariculture growth is already rapid. Increasing nutrient loads and altered nutrient forms (increased availability of reduced relative to oxidized forms of nitrogen) and/or stoichiometric proportions (altered nitrogen:phosphorus ratios) may promote an increase in harmful algal blooms (HABs) either directly or via stimulation of algae on which mixotrophic HABs may feed. HABs can kill or intoxicate the mariculture product with severe economic losses, and can increase risks to human health.


Journal of Environmental Quality | 2015

Losses of ammonia and nitrate from agriculture and their effect on nitrogen recovery in the European Union and the United States between 1900 and 2050

Hans van Grinsven; Lex Bouwman; Kenneth G. Cassman; Harold M. van Es; Michelle L. McCrackin; A. H. W. Beusen

Historical trends and levels of nitrogen (N) budgets and emissions to air and water in the European Union and the United States are markedly different. Agro-environmental policy approaches also differ, with emphasis on voluntary or incentive-based schemes in the United States versus a more regulatory approach in the European Union. This paper explores the implications of these differences for attaining long-term policy targets for air and water quality. Nutrient surplus problems were more severe in the European Union than in the United States during the 1970s and 1980s. The EU Nitrates and National Emission Ceilings directives contributed to decreases in fertilizer use, N surplus, and ammonia (NH) emissions, whereas in the United States they stabilized, although NH emissions are still increasing. These differences were analyzed using statistical data for 1900-2005 and the global IMAGE model. IMAGE could reproduce NH emissions and soil N surpluses at different scales (European Union and United States, country and state) and N loads in the Rhine and Mississippi. The regulation-driven changes during the past 25 yr in the European Union have reduced public concerns and have brought agricultural N loads to the aquatic environment closer to US levels. Despite differences in agro-environmental policies and agricultural structure (more N-fixing soybean and more spatially separated feed and livestock production in the United States than in the European Union), current N use efficiency in US and EU crop production is similar. IMAGE projections for the IAASTD-baseline scenario indicate that N loading to the environment in 2050 will be similar to current levels. In the United States, environmental N loads will remain substantially smaller than in the European Union, whereas agricultural production in 2050 in the United States will increase by 30% relative to 2005, as compared with an increase of 8% in the European Union. However, in the United States, even rigorous mitigation with maximum recycling of manure N and a 25% reduction in fertilizer use will not achieve the policy target to halve the N export to the Gulf of Mexico.


Environmental Research Letters | 2016

Nitrogen use in the global food system: past trends and future trajectories of agronomic performance, pollution, trade, and dietary demand

Luis Lassaletta; Gilles Billen; Josette Garnier; Lex Bouwman; Eduardo Velázquez; Nathaniel D. Mueller; James S. Gerber

Nitrogen (N) limits crop and grass production, and it is an essential component of dietary proteins. However, N is mobile in the soil-plant system and can be lost to the environment. Estimates of N flows provide a critical tool for understanding and improving the sustainability and equity of the global food system. This letter describes an integrated analysis of changes in N in human diets, N use efficiency (NUE) of cropping and livestock systems, N pollution and N in traded food and feed products for 12 world regions for the period 1960–2050. The largest absolute change in consumption of animal proteins during the period 1960–2009 is seen in China, while the largest share of animal protein per capita is currently observed in North America, Europe and Oceania. Due to the substantial growth of the livestock sector, about three quarters of contemporary global crop production (expressed in protein and including fodder crops and bioenergy byproducts) is allocated to livestock. Trends and levels of NUE and N surpluses in crop production are also diverse, as some regions show soil N depletion (developing regions, e.g. Africa), improving efficiency (industrialized regions, e.g. USA and Europe) and excessive N use (e.g. China, India). Global trade between the 12 regions has increased by a factor of 7.5 for vegetable proteins and by a factor of 10 for animal proteins. The scenarios for 2050 demonstrate that it would be possible to feed the global population in 2050 with moderate animal protein consumption but with much less N pollution, and less international trade than today. In such a scenario, optimal allocation of N inputs among regions to maximize NUE would further decrease pollution, but would require increased levels of N trade comparable to those in a BAU scenario.


Global Change Biology | 2017

Phosphorus in agricultural soils: drivers of its distribution at the global scale

Bruno Ringeval; Laurent Augusto; Hervé Monod; Dirk van Apeldoorn; Lex Bouwman; David L. Achat; L P Chini; Kristof Van Oost; Bertrand Guenet; Rong Wang; Bertrand Decharme; Thomas Nesme; Sylvain Pellerin

Abstract Phosphorus (P) availability in soils limits crop yields in many regions of the World, while excess of soil P triggers aquatic eutrophication in other regions. Numerous processes drive the global spatial distribution of P in agricultural soils, but their relative roles remain unclear. Here, we combined several global data sets describing these drivers with a soil P dynamics model to simulate the distribution of P in agricultural soils and to assess the contributions of the different drivers at the global scale. We analysed both the labile inorganic P (PILAB), a proxy of the pool involved in plant nutrition and the total soil P (PTOT). We found that the soil biogeochemical background corresponding to P inherited from natural soils at the conversion to agriculture (BIOG) and farming practices (FARM) were the main drivers of the spatial variability in cropland soil P content but that their contribution varied between PTOT vs. PILAB. When the spatial variability was computed between grid cells at half‐degree resolution, we found that almost all of the PTOT spatial variability could be explained by BIOG, while BIOG and FARM explained 38% and 63% of PILAB spatial variability, respectively. Our work also showed that the driver contribution was sensitive to the spatial scale characterizing the variability (grid cell vs. continent) and to the region of interest (global vs. tropics for instance). In particular, the heterogeneity of farming practices between continents was large enough to make FARM contribute to the variability in PTOT at that scale. We thus demonstrated how the different drivers were combined to explain the global distribution of agricultural soil P. Our study is also a promising approach to investigate the potential effect of P as a limiting factor for agroecosystems at the global scale. &NA; Numerous processes drive the global spatial distribution of phosphorus (P) in agricultural soils, but their relative roles remain unclear. Thanks to a modelling approach, we found that almost all of the global spatial variability in total soil P in cropland soils (PTOT) could be explained by the distribution of the soil biogeochemical background (that determines the P content of soils at the conversion to agriculture, BIOG), while both BIOG and farming practices (FARM) explained the spatial variability in inorganic labile P (PILAB) (˜40% and ˜60%, respectively). Figure. No caption available.

Collaboration


Dive into the Lex Bouwman's collaboration.

Top Co-Authors

Avatar

A. H. W. Beusen

Netherlands Environmental Assessment Agency

View shared research outputs
Top Co-Authors

Avatar

Detlef P. van Vuuren

Netherlands Environmental Assessment Agency

View shared research outputs
Top Co-Authors

Avatar

Elke Stehfest

Netherlands Environmental Assessment Agency

View shared research outputs
Top Co-Authors

Avatar

B. Eickhout

Netherlands Environmental Assessment Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gilles Billen

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Xiangbin Ran

State Oceanic Administration

View shared research outputs
Top Co-Authors

Avatar

Luis Lassaletta

Netherlands Environmental Assessment Agency

View shared research outputs
Top Co-Authors

Avatar

Rik Leemans

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Sietske van der Sluis

Netherlands Environmental Assessment Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge