Leye Wang
Institut Mines-Télécom
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Leye Wang.
ubiquitous computing | 2014
Daqing Zhang; Haoyi Xiong; Leye Wang; Guanling Chen
This paper proposes a novel participant selection framework, named CrowdRecruiter, for mobile crowdsensing. CrowdRecruiter operates on top of energy-efficient Piggyback Crowdsensing (PCS) task model and minimizes incentive payments by selecting a small number of participants while still satisfying probabilistic coverage constraint. In order to achieve the objective when piggybacking crowdsensing tasks with phone calls, CrowdRecruiter first predicts the call and coverage probability of each mobile user based on historical records. It then efficiently computes the joint coverage probability of multiple users as a combined set and selects the near-minimal set of participants, which meets coverage ratio requirement in each sensing cycle of the PCS task. We evaluated CrowdRecruiter extensively using a large-scale real-world dataset and the results show that the proposed solution significantly outperforms three baseline algorithms by selecting 10.0% -- 73.5% fewer participants on average under the same probabilistic coverage constraint.
ieee international conference on pervasive computing and communications | 2015
Haoyi Xiong; Daqing Zhang; Guanling Chen; Leye Wang; Vincent Gauthier
This paper proposes a novel task allocation framework, CrowdTasker, for mobile crowdsensing. CrowdTasker operates on top of energy-efficient Piggyback Crowdsensing (PCS) task model, and aims to maximize the coverage quality of the sensing task while satisfying the incentive budget constraint. In order to achieve this goal, CrowdTasker first predicts the call and mobility of mobile users based on their historical records. With a flexible incentive model and the prediction results, CrowdTasker then selects a set of users in each sensing cycle for PCS task participation, so that the resulting solution achieves near-maximal coverage quality without exceeding incentive budget. We evaluated CrowdTasker extensively using a large-scale real-world dataset and the results show that CrowdTasker significantly outperformed three baseline approaches by achieving 3%-60% higher coverage quality.
IEEE Communications Magazine | 2016
Leye Wang; Daqing Zhang; Yasha Wang; Chao Chen; Xiao Han; Abdallah Mhamed
Sensing cost and data quality are two primary concerns in mobile crowd sensing. In this article, we propose a new crowd sensing paradigm, sparse mobile crowd sensing, which leverages the spatial and temporal correlation among the data sensed in different sub-areas to significantly reduce the required number of sensing tasks allocated, thus lowering overall sensing cost (e.g., smartphone energy consumption and incentives) while ensuring data quality. Sparse mobile crowdsensing applications intelligently select only a small portion of the target area for sensing while inferring the data of the remaining unsensed area with high accuracy. We discuss the fundamental research challenges in sparse mobile crowdsensing, and design a general framework with potential solutions to the challenges. To verify the effectiveness of the proposed framework, a sparse mobile crowdsensing prototype for temperature and traffic monitoring is implemented and evaluated. With several future research directions identified in sparse mobile crowdsensing, we expect that more research interests will be stimulated in this novel crowdsensing paradigm.
IEEE Transactions on Mobile Computing | 2016
Haoyi Xiong; Daqing Zhang; Guanling Chen; Leye Wang; Vincent Gauthier; Laura E. Barnes
This paper first defines a novel spatial-temporal coverage metric, k-depth coverage, for mobile crowdsensing (MCS) problems. This metric considers both the fraction of subareas covered by sensor readings and the number of sensor readings collected in each covered subarea. Then iCrowd, a generic MCS task allocation framework operating with the energy-efficient Piggyback Crowdsensing task model, is proposed to optimize the MCS task allocation with different incentives and k-depth coverage objectives/ constraints. iCrowd first predicts the call and mobility of mobile users based on their historical records, then it selects a set of users in each sensing cycle for sensing task participation, so that the resulting solution achieves two dual optimal MCS data collection goals-i.e., Goal. 1 near-maximal k-depth coverage without exceeding a given incentive budget or Goal. 2 near-minimal incentive payment while meeting a predefined k-depth coverage goal. We evaluated iCrowd extensively using a large-scale real-world dataset for these two data collection goals. The results show that: for Goal.1, iCrowd significantly outperformed three baseline approaches by achieving 3-60 percent higher k-depth coverage; for Goal.2, iCrowd required 10.0-73.5 percent less incentives compared to three baselines under the same k-depth coverage constraint.
ACM Transactions on Intelligent Systems and Technology | 2015
Haoyi Xiong; Daqing Zhang; Leye Wang; J. Paul Gibson; Jie Zhu
Mobile Crowdsensing (MCS) requires users to be motivated to participate. However, concerns regarding energy consumption and privacy—among other things—may compromise their willingness to join such a crowd. Our preliminary observations and analysis of common MCS applications have shown that the data transfer in MCS applications may incur significant energy consumption due to the 3G connection setup. However, if data are transferred in parallel with a traditional phone call, then such transfer can be done almost “for free”: with only an insignificant additional amount of energy required to piggy-back the data—usually incoming task assignments and outgoing sensor results—on top of the call. Here, we present an Energy-Efficient Mobile Crowdsensing (EEMC) framework where task assignments and sensing results are transferred in parallel with phone calls. The main objective, and the principal contribution of this article, is an MCS task assignment scheme that guarantees that a minimum number of anonymous participants return sensor results within a specified time frame, while also minimizing the waste of energy due to redundant task assignments and considering privacy concerns of participants. Evaluations with a large-scale real-world phone call dataset show that our proposed EEMC framework outperforms the baseline approaches, and it can reduce overall energy consumption in data transfer by 54--66p when compared to the 3G-based solution.
ubiquitous computing | 2015
Leye Wang; Daqing Zhang; Animesh Pathak; Chao Chen; Haoyi Xiong; Dingqi Yang; Yasha Wang
Data quality and budget are two primary concerns in urban-scale mobile crowdsensing applications. In this paper, we leverage the spatial and temporal correlation among the data sensed in different sub-areas to significantly reduce the required number of sensing tasks allocated (corresponding to budget), yet ensuring the data quality. Specifically, we propose a novel framework called CCS-TA, combining the state-of-the-art compressive sensing, Bayesian inference, and active learning techniques, to dynamically select a minimum number of sub-areas for sensing task allocation in each sensing cycle, while deducing the missing data of unallocated sub-areas under a probabilistic data accuracy guarantee. Evaluations on real-life temperature and air quality monitoring datasets show the effectiveness of CCS-TA. In the case of temperature monitoring, CCS-TA allocates 18.0-26.5% fewer tasks than baseline approaches, allocating tasks to only 15.5% of the sub-areas on average while keeping overall sensing error below 0.25°C in 95% of the cycles.
IEEE Transactions on Intelligent Transportation Systems | 2017
Chao Chen; Daqing Zhang; Xiaojuan Ma; Bin Guo; Leye Wang; Yasha Wang; Edwin Hsing-Mean Sha
Despite the great demand on and attempts at package express shipping services, online retailers have not yet had a practical solution to make such services profitable. In this paper, we propose an economical approach to express package delivery, i.e., exploiting relays of taxis with passengers to help transport package collectively, without degrading the quality of passenger services. Specifically, we propose a two-phase framework called crowddeliver for the package delivery path planning. In the first phase, we mine the historical taxi trajectory data offline to identify the shortest package delivery paths with estimated travel time given any Origin–Destination pairs. Using the paths and travel time as the reference, in the second phase we develop an online adaptive taxi scheduling algorithm to find the near-optimal delivery paths iteratively upon real-time requests and direct the package routing accordingly. Finally, we evaluate the two-phase framework using the real-world data sets, which consist of a point of interest, a road network, and the large-scale trajectory data, respectively, that are generated by 7614 taxis in a month in the city of Hangzhou, China. Results show that over 85% of packages can be delivered within 8 hours, with around 4.2 relays of taxis on average.
Expert Systems With Applications | 2016
Xiao Han; Leye Wang; Reza Farahbakhsh; Ángel Cuevas; Ruben Cuevas; Noel Crespi; Lina He
Abstract Communities are basic components in networks. As a promising social application, community recommendation selects a few items (e.g., movies and books) to recommend to a group of users. It usually achieves higher recommendation precision if the users share more interests; whereas, in plenty of communities (e.g., families, work groups), the users often share few. With billions of communities in online social networks, quickly selecting the communities where the members are similar in interests is a prerequisite for community recommendation. To this end, we propose an easy-to-compute metric, Community Similarity Degree (CSD), to estimate the degree of interest similarity among multiple users in a community. Based on 3460 emulated Facebook communities, we conduct extensive empirical studies to reveal the characteristics of CSD and validate the effectiveness of CSD. In particular, we demonstrate that selecting communities with larger CSD can achieve higher recommendation precision. In addition, we verify the computation efficiency of CSD: it costs less than 1 hour to calculate CSD for over 1 million of communities. Finally, we draw insights about feasible extensions to the definition of CSD, and point out the practical uses of CSD in a variety of applications other than community recommendation.
ubiquitous computing | 2016
Longbiao Chen; Daqing Zhang; Leye Wang; Dingqi Yang; Xiaojuan Ma; Shijian Li; Zhaohui Wu; Gang Pan; Thi Mai Trang Nguyen; Jérémie Jakubowicz
Bike sharing is booming globally as a green transportation mode, but the occurrence of over-demand stations that have no bikes or docks available greatly affects user experiences. Directly predicting individual over-demand stations to carry out preventive measures is difficult, since the bike usage pattern of a station is highly dynamic and context dependent. In addition, the fact that bike usage pattern is affected not only by common contextual factors (e.g., time and weather) but also by opportunistic contextual factors (e.g., social and traffic events) poses a great challenge. To address these issues, we propose a dynamic cluster-based framework for over-demand prediction. Depending on the context, we construct a weighted correlation network to model the relationship among bike stations, and dynamically group neighboring stations with similar bike usage patterns into clusters. We then adopt Monte Carlo simulation to predict the over-demand probability of each cluster. Evaluation results using real-world data from New York City and Washington, D.C. show that our framework accurately predicts over-demand clusters and outperforms the baseline methods significantly.
Frontiers of Computer Science in China | 2017
Jiangtao Wang; Yasha Wang; Daqing Zhang; Leye Wang; Chao Chen; Jae Woong Lee; Yuanduo He
People often have to queue for a busy service in many places around a city, and knowing the queue time can be helpful for making better activity plans to avoid long queues. Traditional solutions to the queue time monitoring are based on pre-deployed infrastructures, such as cameras and infrared sensors, which are costly and fail to deliver the queue time information to scattered citizens. This paper presents CrowdQTE, a mobile crowdsensing system, which utilizes the sensor-enhanced mobile devices and crowd human intelligence to monitor and provide real-time queue time information for various queuing scenarios. When people are waiting in a line, we utilize the accelerometer sensor data and ambient contexts to automatically detect the queueing behavior and calculate the queue time. When people are not waiting in a line, it estimates the queue time based on the information reported manually by participants. We evaluate the performance of the system with a two-week and 12-person deployment using commercially-available smartphones. The results demonstrate that CrowdQTE is effective in estimating queuing status.