Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leyi Wang is active.

Publication


Featured researches published by Leyi Wang.


PLOS ONE | 2013

Norovirus P Particle Efficiently Elicits Innate, Humoral and Cellular Immunity

Hao Fang; Ming Tan; Ming Xia; Leyi Wang; Xi Jiang

Norovirus (NoV) P domain complexes, the 24 mer P particles and the P dimers, induced effective humoral immunity, but their role in the cellular immune responses remained unclear. We reported here a study on cellular immune responses of the two P domain complexes in comparison with the virus-like particle (VLP) of a GII.4 NoV (VA387) in mice. The P domain complexes induced significant central memory CD4+ T cell phenotypes (CD4+ CD44+ CD62L+ CCR7+) and activated polyclonal CD4+ T cells as shown by production of Interleukin (IL)-2, Interferon (IFN)-γ, and Tumor Necrosis Factor (TNF)-α. Most importantly, VA387-specific CD4+ T cell epitope induced a production of IFN-γ, indicating an antigen-specific CD4+ T cell response in P domain complex-immunized mice. Furthermore, P domain complexes efficiently induced bone marrow-derived dendritic cell (BMDC) maturation, evidenced by up-regulation of co-stimulatory and MHC class II molecules, as well as production of IL-12 and IL-1β. Finally, P domain complex-induced mature dendritic cells (DCs) elicited proliferation of specific CD4+ T cells targeting VA387 P domain. Overall, we conclude that the NoV P domain complexes are efficiently presented by DCs to elicit not only humoral but also cellular immune responses against NoVs. Since the P particle is highly effective for both humoral and cellular immune responses and easily produced in Escherichia coli (E. coli), it is a good choice of vaccine against NoVs and a vaccine platform against other diseases.


Vaccine | 2011

A candidate dual vaccine against influenza and noroviruses.

Ming Xia; Ming Tan; Chao Wei; Weiming Zhong; Leyi Wang; Monica M. McNeal; Xi Jiang

The extracellular domain of the matrix protein 2 (M2e) of influenza viruses is highly conserved among all influenza A subtypes, making it a suitable target for a universal influenza vaccine. In this study, we demonstrated an enhanced immune response and protection of a chimeric M2e vaccine against influenza A viruses using our newly developed vaccine platform, the norovirus P particle, to present the M2e peptide. The 23-amino acid peptide was inserted into one of the surface loops of the P protein, resulting in 24 copies of M2e presented on each P particle. Significantly (P<0.001) increased antibody responses to M2e were observed in mice immunized with the P particle-M2e chimera compared with those immunized with the free M2e peptides. Mice immunized with the P particle-M2e vaccine were fully protected (100% survived) against lethal challenge of a mouse adapted human influenza virus PR8 (H1N1), while only low survival rates (<12.5%) were found in mice immunized with the free M2e peptides or wild type P particle. In addition, the mouse sera collected after immunization with the P particle-M2e vaccine were able to block the binding of norovirus virus-like particle and P particle to histo-blood group antigen receptors. These results suggest that the P particle-M2e chimera can be used as dual vaccine against both noroviruses and influenza viruses.


Biomaterials | 2013

Polyvalent complexes for vaccine development

Leyi Wang; Pengwei Huang; Hao Fang; Ming Xia; Weiming Zhong; Monica M. McNeal; Xi Jiang; Ming Tan

Homotypic interaction is a common phenomenon of many proteins, through which they form dimers. We developed a simple approach to turn small dimeric proteins into large polyvalent complexes for increased immunogenicity and functionality. This was achieved via a fusion of two or more dimeric proteins together to induce polyvalent complex formation through intermolecular dimerizations. Two types of polyvalent complexes, linear and network, assembled spontaneously when a dimeric glutathione S-transferase (GST) was fused with one or two protruding (P) domains of norovirus (NoV). Additionally, a monomeric antigen, the peptide epitope M2e of the influenza virus (IV) or the VP8* antigen of rotavirus (RV), can be inserted to the polyvalent complexes. Mouse immunization demonstrated that the polyvalent complexes induced significantly higher antibody and CD4(+) T cell responses to the complex components than those induced by the free epitope and antigens. Further evaluations indicated that the polyvalent complex vaccines exhibited significantly higher neutralization activity against NoV and RV and stronger protection against IV challenges in a mouse model than those of the monomeric or dimeric vaccines. The binding of NoV P proteins to their HBGA ligands was also significantly increased through the polyvalent complex formation. Therefore, our polyvalent complex system provides a new strategy for novel vaccine development and may find various applications throughout biomedicine.


Vaccine | 2014

A dual vaccine candidate against norovirus and hepatitis E virus.

Leyi Wang; Dianjun Cao; Chao Wei; Xiang-Jin Meng; Xi Jiang; Ming Tan

Norovirus (NoV) and hepatitis E virus (HEV) are both enterically-transmitted viruses causing gastroenteritis and hepatitis, respectively, in humans. While a vaccine against HEVs recently became available in China, there is no prophylactic or therapeutic approach against NoVs. Both NoV and HEV have surface protrusions formed by dimers of the protruding (P) domains of the viral capsids, which is responsible for virus-host interactions and eliciting viral neutralizing antibody. We developed in this study a bivalent vaccine against the two viruses through a recently developed polyvalent complex platform. The dimeric P domains of NoV and HEV were fused together, designated as NoV P(-)-HEV P, which was then linked with the dimeric glutathione-S-transferase (GST). After expression and purification in E. coli, the GST-NoV P(-)-HEV P fusion protein assembled into polyvalent complexes with a mean size of 1.8μm, while the NoV P(-)-HEV P formed oligomers ranging from 100 to 420kDa. Mouse immunization study demonstrated that both GST-NoV P(-)-HEV P and NoV P(-)-HEV P complexes induced significantly higher antibody titers to NoV P(-) and HEV P, respectively, than those induced by a mixture of the NoV P(-) and HEV P dimers. Furthermore, the complex-induced antisera exhibited significantly higher neutralizing activity against HEV infection in HepG2/3A cells and higher blocking activity on NoV P particles binding to HBGA receptors than those of the dimer-induced antisera. Thus, GST-NoV P(-)-HEV P and NoV P(-)-HEV P complexes are promising dual vaccine candidates against both NoV and HEV.


Glycobiology | 2013

Affinities of recombinant norovirus P dimers for human blood group antigens

Ling Han; Pavel I. Kitov; Elena N. Kitova; Ming Tan; Leyi Wang; Ming Xia; Xi Jiang; John S. Klassen

Noroviruses (NoVs), the major cause of viral acute gastroenteritis, recognize histo-blood group antigens (HBGAs) as receptors or attachment factors. To gain a deeper understanding of the interplay between NoVs and their hosts, the affinities of recombinant P dimers (P₂s) of a GII.4 NoV (VA387) to a library of 41 soluble analogs of HBGAs were measured using the direct electrospray ionization mass spectrometry assay. The HBGAs contained the A, B, H and Lewis epitopes, with variable sizes (2-6 residues) and different types (1-6). The results reveal that the P₂s exhibit a broad specificity for the HBGAs and bind to all of the oligosaccharides tested. Overall, the affinities are relatively low, ranging from 400 to 3000 M⁻¹ and are influenced by the chain type: 3 > 1 ≈ 2 ≈ 4 ≈ 5 ≈ 6 for H antigens; 6 > 1 ≈ 3 ≈ 4 ≈ 5 > 2 for A antigens; 3 > 1 ≈ 4 ≈ 5 ≈ 6 > 2 for B antigens, but not by chain length. The highest-affinity ligands are B type 3 (3000 ± 300 M⁻¹) and A type 6 (2350 ± 60 M⁻¹). While the higher affinity to the type 3 H antigen was previously observed, preferential binding to the types 6 and 3 antigens with A and B epitopes, respectively, has not been previously reported. A truncated P domain dimer (lacking the C-terminal arginine cluster) exhibits similar binding. The central-binding motifs in the HBGAs were identified by molecular-docking simulations.


Biomaterials | 2014

Branched-linear and agglomerate protein polymers as vaccine platforms.

Leyi Wang; Ming Xia; Pengwei Huang; Hao Fang; Dianjun Cao; Xiang-Jin Meng; Monica M. McNeal; Xi Jiang; Ming Tan

Many viral structural proteins and their truncated domains share a common feature of homotypic interaction forming dimers, trimers, and/or oligomers with various valences. We reported previously a simple strategy for construction of linear and network polymers through the dimerization feature of viral proteins for vaccine development. In this study, technologies were developed to produce more sophisticated polyvalent complexes through both the dimerization and oligomerization natures of viral antigens. As proof of concept, branched-linear and agglomerate polymers were made via fusions of the dimeric glutathione-s-transferase (GST) with either a tetrameric hepatitis E virus (HEV) protruding protein or a 24-meric norovirus (NoV) protruding protein. Furthermore, a monomeric antigen, either the M2e epitope of influenza A virus or the VP8* antigen of rotavirus, was inserted and displayed by the polymer platform. All resulting polymers were easily produced in Escherichia coli at high yields. Immunization of mice showed that the polymer vaccines induced significantly higher specific humoral and T cell responses than those induced by the dimeric antigens. Additional evidence in supporting use of polymer vaccines included the significantly higher neutralization activity and protective immunity of the polymer vaccines against the corresponding viruses than those of the dimer vaccines. Thus, our technology for production of polymers containing different viral antigens offers a strategy for vaccine development against infectious pathogens and their associated diseases.


Vaccine | 2016

A trivalent vaccine candidate against hepatitis E virus, norovirus, and astrovirus.

Ming Xia; Chao Wei; Leyi Wang; Dianjun Cao; Xiang-Jin Meng; Xi Jiang; Ming Tan

Hepatitis E virus (HEV), norovirus (NoV), and astrovirus (AstV) are enterically-transmitted viral pathogens causing epidemic or endemic hepatitis (HEV) and gastroenteritis (NoV and AstV) respectively in humans, leading to significant morbidity and mortality worldwide. While a recombinant subunit vaccine against HEVs is available in China, there is no commercial vaccine or antiviral against NoV or AstV. We report here our development of a trivalent vaccine against the three viral pathogens through our new polymer vaccine technology. All HEV, NoV, and AstV are non-enveloped RNA viruses covered by a protein capsid, featuring surface protruding (P) proteins that are responsible for virus-host interaction. These dimeric P proteins elicit neutralizing antibody and are good targets for subunit vaccine development. The trivalent subunit vaccine was developed by fusion of the dimeric P domains of the three viruses together that formed tetramers. This trivalent vaccine elicited significantly higher antibody responses in mice against all three P domains than those induced by a mixture of the three free P domains (mixed vaccine). Furthermore, the post-immune antisera of the trivalent vaccine showed significantly higher neutralizing titers against HEV infection in cell culture and higher blocking activity against NoV binding to HBGA ligands than those of the post-immune sera of the mixed vaccine. Thus, the trivalent vaccine is a promising vaccine candidate against HEV, NoV, and AstV.


Virology | 2015

Strain-specific interaction of a GII.10 Norovirus with HBGAs

Miao Jin; Ming Tan; Ming Xia; Chao Wei; Pengwei Huang; Leyi Wang; Weiming Zhong; Zhao-jun Duan; Xi Jiang

Noroviruses (NoVs), an important cause of gastroenteritis in humans, recognize human histo-blood group antigens (HBGAs) as receptors. The crystal structures of the protruding (P) domain of a GII.10 NoV (Vietnam 026) in complex with various HBGA oligosaccharides were elucidated. However, the HBGA binding profile of this virus remains unknown. In this study, we determined the saliva and oligosaccharide binding profiles of this virus and the roles of amino acids that are involved in HBGA binding. Our data showed that Vietnam 026 bound to all ABO secretor and non-secretor saliva with clear signals detected by monoclonal antibodies against H3, H1, Le(y), Le(a) and sialyl Le(a). Mutagenesis study confirmed the binding site determined by the crystallography study, in which single mutations wiped out the binding function. We also identified amino acids surrounding the central binding pocket that may participate in the binding by affecting the HBGA binding specificity of the GII.10 NoV.


Vaccine | 2015

Immunogenicity and protective efficacy of the norovirus P particle-M2e chimeric vaccine in chickens.

M. Elaish; Kyung-il Kang; Ming Xia; Ahmed Khamis Ali; S.A.S. Shany; Leyi Wang; Xi Jiang; Chang-Won Lee

The ectodomain of the influenza matrix protein 2 (M2e) is highly conserved across strains and has been shown to be a promising candidate for universal influenza vaccine in the mouse model. In this study, we tested immune response and protective efficacy of a chimeric norovirus P particle containing the avian M2e protein against challenges with three avian influenza (AI) viruses (H5N2, H6N2, H7N2) in chickens. Two-week-old specific pathogen free chickens were vaccinated 3 times with an M2e-P particle (M2e-PP) vaccine via the subcutaneous (SQ) route with oil adjuvant, and transmucosal routes (intranasal, IN; eye drop, ED; microspray, MS) without adjuvant. M2e-PP vaccination via the SQ route induced significant IgG antibody responses which were increased by each booster vaccination. In groups vaccinated via IN, ED or MS, neither IgG nor IgA responses were detected from sera or nasal washes of immunized birds. The M2e-PP vaccination via the SQ route significantly reduced the virus shedding in the trachea and the cloaca for all three challenge viruses. Despite the absence of detectable IgG and IgA responses in birds vaccinated with the M2e-PP via intranasal routes, a similar level of reduction in virus shedding was observed in the IN group compared to the SQ group. Our results supports that the universal vaccine approach using M2e-based vaccine can provide cross-protection against challenge viruses among different HA subtypes although the efficacy of the vaccine should be enhanced further to be practical. Better understanding of the protective immune mechanism will be critical for the development of an M2e-based vaccine in chickens.


Scientific Reports | 2016

Development and evaluation of two subunit vaccine candidates containing antigens of hepatitis E virus, rotavirus, and astrovirus.

Ming Xia; Chao Wei; Leyi Wang; Dianjun Cao; Xiang-Jin Meng; Xi Jiang; Ming Tan

Hepatitis E virus (HEV), rotavirus (RV), and astrovirus (AstV) are important pathogens that transmit through a common fecal-oral route, causing hepatitis (HEV) and gastroenteritis (RV and AstV) respectively in humans. In this study, we developed and evaluated two subunit vaccine candidates that consisted of the same protruding or spike protein antigens of the three viruses in two formats, a fusion of the three antigens into one molecule (fused vaccine) vs. a mixture of the three free antigens together (mixed vaccine). Both vaccines were easily made via E. coli expression system. Mouse immunization experiments showed that the fused vaccine elicited significantly higher antibody responses against the three viral antigens than those induced by the mixed vaccine. In addition, the mouse post-immune antisera of the fused vaccine revealed significantly higher neutralizing titers against HEV infection in cell culture, as well as significantly higher 50% blocking titers (BT50) against RV VP8-HBGA receptor interactions than those of the post-immune antisera after immunization of the mixed vaccine. Thus, the fused vaccine is a promising trivalent vaccine candidate against HEV, RV, and AstV, which is worth for further development.

Collaboration


Dive into the Leyi Wang's collaboration.

Top Co-Authors

Avatar

Xi Jiang

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ming Tan

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ming Xia

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Chao Wei

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hao Fang

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Monica M. McNeal

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Pengwei Huang

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Weiming Zhong

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge