Leyuan Fang
Hunan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Leyuan Fang.
IEEE Transactions on Geoscience and Remote Sensing | 2013
Shutao Li; Haitao Yin; Leyuan Fang
Remote sensing image fusion can integrate the spatial detail of panchromatic (PAN) image and the spectral information of a low-resolution multispectral (MS) image to produce a fused MS image with high spatial resolution. In this paper, a remote sensing image fusion method is proposed with sparse representations over learned dictionaries. The dictionaries for PAN image and low-resolution MS image are learned from the source images adaptively. Furthermore, a novel strategy is designed to construct the dictionary for unknown high-resolution MS images without training set, which can make our proposed method more practical. The sparse coefficients of the PAN image and low-resolution MS image are sought by the orthogonal matching pursuit algorithm. Then, the fused high-resolution MS image is calculated by combining the obtained sparse coefficients and the dictionary for the high-resolution MS image. By comparing with six well-known methods in terms of several universal quality evaluation indexes with or without references, the simulated and real experimental results on QuickBird and IKONOS images demonstrate the superiority of our method.
Information Fusion | 2017
Shutao Li; Xudong Kang; Leyuan Fang; Jianwen Hu; Haitao Yin
This review provides a survey of various pixel-level image fusion methods according to the adopted transform strategy.The existing fusion performance evaluation methods and the unresolved problems are concluded.The major challenges met in different image fusion applications are analyzed and concluded. Pixel-level image fusion is designed to combine multiple input images into a fused image, which is expected to be more informative for human or machine perception as compared to any of the input images. Due to this advantage, pixel-level image fusion has shown notable achievements in remote sensing, medical imaging, and night vision applications. In this paper, we first provide a comprehensive survey of the state of the art pixel-level image fusion methods. Then, the existing fusion quality measures are summarized. Next, four major applications, i.e., remote sensing, medical diagnosis, surveillance, photography, and challenges in pixel-level image fusion applications are analyzed. At last, this review concludes that although various image fusion methods have been proposed, there still exist several future directions in different image fusion applications. Therefore, the researches in the image fusion field are still expected to significantly grow in the coming years.
IEEE Transactions on Geoscience and Remote Sensing | 2014
Leyuan Fang; Shutao Li; Xudong Kang; Jon Atli Benediktsson
Sparse representation has been demonstrated to be a powerful tool in classification of hyperspectral images (HSIs). The spatial context of an HSI can be exploited by first defining a local region for each test pixel and then jointly representing pixels within each region by a set of common training atoms (samples). However, the selection of the optimal region scale (size) for different HSIs with different types of structures is a nontrivial task. In this paper, considering that regions of different scales incorporate the complementary yet correlated information for classification, a multiscale adaptive sparse representation (MASR) model is proposed. The MASR effectively exploits spatial information at multiple scales via an adaptive sparse strategy. The adaptive sparse strategy not only restricts pixels from different scales to be represented by training atoms from a particular class but also allows the selected atoms for these pixels to be varied, thus providing an improved representation. Experiments on several real HSI data sets demonstrate the qualitative and quantitative superiority of the proposed MASR algorithm when compared to several well-known classifiers.
Biomedical Optics Express | 2012
Leyuan Fang; Shutao Li; Qing Nie; Joseph A. Izatt; Cynthia A. Toth; Sina Farsiu
In this paper, we make contact with the field of compressive sensing and present a development and generalization of tools and results for reconstructing irregularly sampled tomographic data. In particular, we focus on denoising Spectral-Domain Optical Coherence Tomography (SDOCT) volumetric data. We take advantage of customized scanning patterns, in which, a selected number of B-scans are imaged at higher signal-to-noise ratio (SNR). We learn a sparse representation dictionary for each of these high-SNR images, and utilize such dictionaries to denoise the low-SNR B-scans. We name this method multiscale sparsity based tomographic denoising (MSBTD). We show the qualitative and quantitative superiority of the MSBTD algorithm compared to popular denoising algorithms on images from normal and age-related macular degeneration eyes of a multi-center clinical trial. We have made the corresponding data set and software freely available online.
IEEE Transactions on Biomedical Engineering | 2012
Shutao Li; Haitao Yin; Leyuan Fang
Recently, sparse representation has attracted a lot of interest in various areas. However, the standard sparse representation does not consider the intrinsic structure, i.e., the nonzero elements occur in clusters, called group sparsity. Furthermore, there is no dictionary learning method for group sparse representation considering the geometrical structure of space spanned by atoms. In this paper, we propose a novel dictionary learning method, called Dictionary Learning with Group Sparsity and Graph Regularization (DL-GSGR). First, the geometrical structure of atoms is modeled as the graph regularization. Then, combining group sparsity and graph regularization, the DL-GSGR is presented, which is solved by alternating the group sparse coding and dictionary updating. In this way, the group coherence of learned dictionary can be enforced small enough such that any signal can be group sparse coded effectively. Finally, group sparse representation with DL-GSGR is applied to 3-D medical image denoising and image fusion. Specifically, in 3-D medical image denoising, a 3-D processing mechanism (using the similarity among nearby slices) and temporal regularization (to perverse the correlations across nearby slices) are exploited. The experimental results on 3-D image denoising and image fusion demonstrate the superiority of our proposed denoising and fusion approaches.
IEEE Transactions on Geoscience and Remote Sensing | 2015
Leyuan Fang; Shutao Li; Wuhui Duan; Jinchang Ren; Jon Atli Benediktsson
For the classification of hyperspectral images (HSIs), this paper presents a novel framework to effectively utilize the spectral-spatial information of superpixels via multiple kernels, which is termed as superpixel-based classification via multiple kernels (SC-MK). In the HSI, each superpixel can be regarded as a shape-adaptive region, which consists of a number of spatial neighboring pixels with very similar spectral characteristics. First, the proposed SC-MK method adopts an oversegmentation algorithm to cluster the HSI into many superpixels. Then, three kernels are separately employed for the utilization of the spectral information, as well as spatial information, within and among superpixels. Finally, the three kernels are combined together and incorporated into a support vector machine classifier. Experimental results on three widely used real HSIs indicate that the proposed SC-MK approach outperforms several well-known classification methods.
IEEE Transactions on Medical Imaging | 2013
Leyuan Fang; Shutao Li; Ryan P. McNabb; Qing Nie; Anthony N. Kuo; Cynthia A. Toth; Joseph A. Izatt; Sina Farsiu
In this paper, we present a novel technique, based on compressive sensing principles, for reconstruction and enhancement of multi-dimensional image data. Our method is a major improvement and generalization of the multi-scale sparsity based tomographic denoising (MSBTD) algorithm we recently introduced for reducing speckle noise. Our new technique exhibits several advantages over MSBTD, including its capability to simultaneously reduce noise and interpolate missing data. Unlike MSBTD, our new method does not require an a priori high-quality image from the target imaging subject and thus offers the potential to shorten clinical imaging sessions. This novel image restoration method, which we termed sparsity based simultaneous denoising and interpolation (SBSDI), utilizes sparse representation dictionaries constructed from previously collected datasets. We tested the SBSDI algorithm on retinal spectral domain optical coherence tomography images captured in the clinic. Experiments showed that the SBSDI algorithm qualitatively and quantitatively outperforms other state-of-the-art methods.
IEEE Transactions on Geoscience and Remote Sensing | 2015
Leyuan Fang; Shutao Li; Xudong Kang; Jon Atli Benediktsson
A novel superpixel-based discriminative sparse model (SBDSM) for spectral-spatial classification of hyperspectral images (HSIs) is proposed. Here, a superpixel in a HSI is considered as a small spatial region whose size and shape can be adaptively adjusted for different spatial structures. In the proposed approach, the SBDSM first clusters the HSI into many superpixels using an efficient oversegmentation method. Then, pixels within each superpixel are jointly represented by a set of common atoms from a dictionary via a joint sparse regularization. The recovered sparse coefficients are utilized to determine the class label of the superpixel. In addition, instead of directly using a large number of sampled pixels as dictionary atoms, the SBDSM applies a discriminative K-SVD learning algorithm to simultaneously train a compact representation dictionary, as well as a discriminative classifier. Furthermore, by utilizing the class label information of training pixels and dictionary atoms, a class-labeled orthogonal matching pursuit is proposed to accelerate the K-SVD algorithm while still enforcing high discriminability on sparse coefficients when training the classifier. Experimental results on four real HSI datasets demonstrate the superiority of the proposed SBDSM algorithm over several well-known classification approaches in terms of both classification accuracies and computational speed.
IEEE Transactions on Geoscience and Remote Sensing | 2015
Xudong Kang; Shutao Li; Leyuan Fang; Jon Atli Benediktsson
In this paper, a novel feature extraction method based on intrinsic image decomposition (IID) is proposed for hyperspectral image classification. The proposed method consists of the following steps. First, the spectral dimension of the hyperspectral image is reduced with averaging-based image fusion. Then, the dimension reduced image is partitioned into several subsets of adjacent bands. Next, the reflectance and shading components of each subset are estimated with an optimization-based IID technique. Finally, pixel-wise classification is performed only on the reflectance components, which reflect the material-dependent properties of different objects. Experimental results show that, with the proposed feature extraction method, the support vector machine classifier is able to obtain much higher classification accuracy even when the number of training samples is quite small. This demonstrates that IID is indeed an effective way for feature extraction of hyperspectral images.
IEEE Transactions on Biomedical Engineering | 2012
Shutao Li; Leyuan Fang; Haitao Yin
In this paper, we propose an efficient dictionary learning algorithm for sparse representation of given data and suggest a way to apply this algorithm to 3-D medical image denoising. Our learning approach is composed of two main parts: sparse coding and dictionary updating. On the sparse coding stage, an efficient algorithm named multiple clusters pursuit (MCP) is proposed. The MCP first applies a dictionary structuring strategy to cluster the atoms with high coherence together, and then employs a multiple-selection strategy to select several competitive atoms at each iteration. These two strategies can greatly reduce the computation complexity of the MCP and assist it to obtain better sparse solution. On the dictionary updating stage, the alternating optimization that efficiently approximates the singular value decomposition is introduced. Furthermore, in the 3-D medical image denoising application, a joint 3-D operation is proposed for taking the learning capabilities of the presented algorithm to simultaneously capture the correlations within each slice and correlations across the nearby slices, thereby obtaining better denoising results. The experiments on both synthetically generated data and real 3-D medical images demonstrate that the proposed approach has superior performance compared to some well-known methods.