Li-Dek Chou
University of California, Irvine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Li-Dek Chou.
Optics Express | 2011
Gangjun Liu; Li-Dek Chou; Wangcun Jia; Wenjuan Qi; Bernard Choi; Zhongping Chen
The traditional phase-resolved Doppler method demonstrates great success for in-vivo imaging of blood flow and blood vessels. However, the phase-resolved method always requires high phase stability of the system. In phase instable situations, the performance of the phase-resolved methods will be degraded. We propose a modified Doppler variance algorithm that is based on the intensity or amplitude value. Performances of the proposed algorithm are compared with traditional phase-resolved Doppler variance and color Doppler methods for both phase stable and phase instable systems. For the phase instable situation, the proposed algorithm demonstrates images without phase instability induced artifacts. In-vivo imaging of window-chamber hamster skin is demonstrated for phase instable situation with a spectrometer-based Fourier domain OCT system. A microelectromechanical systems (MEMS) based swept source OCT (SSOCT) system is also used to demonstrate the performance of the proposed method in a phase instable situation. The phase stability of the SSOCT system is analyzed. In-vivo imaging of the blood vessel of human skin is demonstrated with the proposed method and the SSOCT system. For the phase stable situation, the proposed algorithm also demonstrates comparable performance with traditional phase-resolved methods. In-vivo imaging of the human choroidal blood vessel network is demonstrated with the proposed method under the phase stable situation. Depth-resolved fine choroidal blood vessel networks are shown.
Journal of Biomedical Optics | 2012
Wenjuan Qi; Ruimin Chen; Li-Dek Chou; Gangjun Liu; Jun Zhang; Qifa Zhou; Zhongping Chen
Abstract. Many diseases involve changes in the biomechanical properties of tissue, and there is a close correlation between tissue elasticity and pathology. We report on the development of a phase-resolved acoustic radiation force optical coherence elastography method (ARF-OCE) to evaluate the elastic properties of tissue. This method utilizes chirped acoustic radiation force to produce excitation along the sample’s axial direction, and it uses phase-resolved optical coherence tomography (OCT) to measure the vibration of the sample. Under 500-Hz square wave modulated ARF signal excitation, phase change maps of tissue mimicking phantoms are generated by the ARF-OCE method, and the resulting Young’s modulus ratio is correlated with a standard compression test. The results verify that this technique could efficiently measure sample elastic properties accurately and quantitatively. Furthermore, a three-dimensional ARF-OCE image of the human atherosclerotic coronary artery is obtained. The result indicates that our dynamic phase-resolved ARF-OCE method can delineate tissues with different mechanical properties.
Analytical Chemistry | 2011
Li-Chen Su; Ying-Feng Chang; Chien Chou; Ja-an Annie Ho; Ying-Chang Li; Li-Dek Chou; Cheng-Chung Lee
Measuring the kinetic constants of protein-protein interactions at ultralow concentrations becomes critical in characterizing biospecific affinity, and exploring the feasibility of clinical diagnosis with respect to detection sensitivity, efficiency and accuracy. In this study, we propose a method that can calculate the binding constants of protein-protein interactions in sandwich assays at ultralow concentrations at the pg/mL level, using a localized surface plasmon coupled fluorescence fiber-optic biosensor (LSPCF-FOB). We discuss a two-compartment model to achieve reaction-limited kinetics under the stagnant conditions of the reaction chamber. The association rate constant, dissociation rate constant, and the equilibrium dissociation constant, that is, k(a), k(d), K(D), respectively, of the kinetics of binding between total prostate-specific antigen (t-PSA) and anti-t-PSA at concentrations from 0.1 pg/mL to 1 ng/mL, were measured either in PBS or in human serum. This is the first time that k(a), k(d), and K(D) have been measured at such a low concentration range in a complex sample such as human serum.
Scientific Reports | 2016
Carolyn A. Coughlan; Li-Dek Chou; Joseph Jing; Jason J. Chen; Swathi Rangarajan; Theodore H. Chang; Giriraj K. Sharma; Kyoungrai Cho; Dong-Hoon Lee; Julie A. Goddard; Zhongping Chen; Brian J. F. Wong
Diagnosis and treatment of vocal fold lesions has been a long-evolving science for the otolaryngologist. Contemporary practice requires biopsy of a glottal lesion in the operating room under general anesthesia for diagnosis. Current in-office technology is limited to visualizing the surface of the vocal folds with fiber-optic or rigid endoscopy and using stroboscopic or high-speed video to infer information about submucosal processes. Previous efforts using optical coherence tomography (OCT) have been limited by small working distances and imaging ranges. Here we report the first full field, high-speed, and long-range OCT images of awake patients’ vocal folds as well as cross-sectional video and Doppler analysis of their vocal fold motions during phonation. These vertical-cavity surface-emitting laser source (VCSEL) OCT images offer depth resolved, high-resolution, high-speed, and panoramic images of both the true and false vocal folds. This technology has the potential to revolutionize in-office imaging of the larynx.
Journal of Biomedical Optics | 2014
Li-Dek Chou; Slava Belenkiy; Joseph Jing; Tirunelvil Ramalingam; Matthew Brenner; Zhongping Chen
Abstract. We report on the feasibility of using long-range swept-source optical coherence tomography (OCT) to detect airway changes following smoke inhalation in a sheep model. The long-range OCT system (with axial imaging range of 25 mm) and probe are capable of rapidly obtaining a series of high-resolution full cross-sectional images and three-dimensional reconstructions covering 20-cm length of tracheal and bronchial airways with airway diameter up to 25 mm, regardless of the position of the probe within the airway lumen. Measurements of airway thickness were performed at baseline and postinjury to show mucosal thickness changes following smoke inhalation.
Scientific Reports | 2016
Joseph Jing; Li-Dek Chou; Erica Su; Brian J. F. Wong; Zhongping Chen
The upper airway is a complex tissue structure that is prone to collapse. Current methods for studying airway obstruction are inadequate in safety, cost, or availability, such as CT or MRI, or only provide localized qualitative information such as flexible endoscopy. Long range optical coherence tomography (OCT) has been used to visualize the human airway in vivo, however the limited imaging range has prevented full delineation of the various shapes and sizes of the lumen. We present a new long range OCT system that integrates high speed imaging with a real-time position tracker to allow for the acquisition of an accurate 3D anatomical structure in vivo. The new system can achieve an imaging range of 30 mm at a frame rate of 200 Hz. The system is capable of generating a rapid and complete visualization and quantification of the airway, which can then be used in computational simulations to determine obstruction sites.
American Journal of Respiratory and Critical Care Medicine | 2015
Giriraj K. Sharma; Gurpreet S. Ahuja; Maximilian Wiedmann; Kathryn Osann; Erica Su; Andrew E. Heidari; Joseph Jing; Yueqiao Qu; Frances Lazarow; Alex Wang; Li-Dek Chou; Cherry C. Uy; Vijay Dhar; John P. Cleary; Nguyen Pham; Kevin Huoh; Zhongping Chen; Brian J. F. Wong
RATIONALE Subglottic edema and acquired subglottic stenosis are potentially airway-compromising sequelae in neonates following endotracheal intubation. At present, no imaging modality is capable of in vivo diagnosis of subepithelial airway wall pathology as signs of intubation-related injury. OBJECTIVES To use Fourier domain long-range optical coherence tomography (LR-OCT) to acquire micrometer-resolution images of the airway wall of intubated neonates in a neonatal intensive care unit setting and to analyze images for histopathology and airway wall thickness. METHODS LR-OCT of the neonatal laryngotracheal airway was performed a total of 94 times on 72 subjects (age, 1-175 d; total intubation, 1-104 d). LR-OCT images of the airway wall were analyzed in MATLAB. Medical records were reviewed retrospectively for extubation outcome. MEASUREMENTS AND MAIN RESULTS Backward stepwise regression analysis demonstrated a statistically significant association between log(duration of intubation) and both laryngeal (P < 0.001; multiple r(2) = 0.44) and subglottic (P < 0.001; multiple r(2) = 0.55) airway wall thickness. Subjects with positive histopathology on LR-OCT images had a higher likelihood of extubation failure (odds ratio, 5.9; P = 0.007). Longer intubation time was found to be significantly associated with extubation failure. CONCLUSIONS LR-OCT allows for high-resolution evaluation and measurement of the airway wall in intubated neonates. Our data demonstrate a positive correlation between laryngeal and subglottic wall thickness and duration of intubation, suggestive of progressive soft tissue injury. LR-OCT may ultimately aid in the early diagnosis of postintubation subglottic injury and help reduce the incidences of failed extubation caused by subglottic edema or acquired subglottic stenosis in neonates. Clinical trial registered with www.clinicaltrials.gov (NCT 00544427).
Optics Express | 2009
Chih-Jen Yu; Chu-En Lin; Ying-Chang Li; Li-Dek Chou; Jheng-Syong Wu; Cheng-Chung Lee; Chien Chou
This research proposed a dual-frequency heterodyne ellipsometer (DHE) in which a dual-frequency collinearly polarized laser beam with equal amplitude and zero phase difference between p- and s-polarizations is setup. It is based on the polarizer-sample-analyzer, PSA configuration of the conventional ellipsometer. DHE enables to characterize a generalized elliptical phase retarder by treating it as the combination of a linear phase retarder and a polarization rotator. The method for measuring elliptical birefringence of an elliptical phase retarder based on the equivalence theorem of an unitary optical system was derived and the experimental verification by use of DHE was demonstrated too. The experimental results show the capability of DHE on characterization of a generalized phase retardation plate accurately.
Journal of Biomedical Optics | 2015
Andrew E. Heidari; Samer Moghaddam; Kimberly K. Truong; Li-Dek Chou; Carl Genberg; Matthew Brenner; Zhongping Chen
Author(s): Heidari, AE; Moghaddam, S; Truong, KK; Chou, L; Genberg, C; Brenner, M; Chena, Z
Journal of Innovative Optical Health Sciences | 2012
Li-Ping Yu; Jian-Chen Guo; Li-Dek Chou; Te-Lun Ma; Jheng-Syong Wu; Jiann-Der Lee; Chien Chou
In conventional polarization-sensitive optical coherence tomography (PS-OCT), phase retardation is obtained by the amplitude of P and S polarization only, and the fast axis angle is obtained by the phase difference in P and S polarizations via Hilbert transformation. In this paper, we proposed a modified PS-OCT setup in which the phase retardation and fast axis angle are simply expressed as the function of the amplitude of P and S polarization and their differential signal. Due to the common-path feature between the two channels of P and S polarization, the fluctuation in the measurement of phase retardation and fast axis angle caused by excess noise and phase noise from the laser source can be reduced by the differential signal of P and S polarization via a modified balance detector. Thus, the signal of phase retardation and fast angle axis in the deep layer of a porcine sample can be improved.